Isomonodromy for the Degenerate Fifth Painlevé Equation

This is a sequel to papers by the last two authors making the Riemann-Hilbert correspondence and isomonodromy explicit. For the degenerate fifth Painlevé equation, the moduli spaces for connections and for monodromy are explicitly computed. It is proven that the extended Riemann-Hilbert morphism is...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Acosta-Humánez, P.B., van der Put, M., Top, J.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148586
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Isomonodromy for the Degenerate Fifth Painlevé Equation / P.B. Acosta-Humánez, M. van der Put, J. Top // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 26 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148586
record_format dspace
fulltext
spelling irk-123456789-1485862019-02-19T01:29:57Z Isomonodromy for the Degenerate Fifth Painlevé Equation Acosta-Humánez, P.B. van der Put, M. Top, J. This is a sequel to papers by the last two authors making the Riemann-Hilbert correspondence and isomonodromy explicit. For the degenerate fifth Painlevé equation, the moduli spaces for connections and for monodromy are explicitly computed. It is proven that the extended Riemann-Hilbert morphism is an isomorphism. As a consequence these equations have the Painlevé property and the Okamoto-Painlevé space is identified with a moduli space of connections. Using MAPLE computations, one obtains formulas for the degenerate fifth Painlevé equation, for the Bäcklund transformations. 2017 Article Isomonodromy for the Degenerate Fifth Painlevé Equation / P.B. Acosta-Humánez, M. van der Put, J. Top // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 26 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 33E17; 14D20; 14D22; 34M55 DOI:10.3842/SIGMA.2017.029 http://dspace.nbuv.gov.ua/handle/123456789/148586 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description This is a sequel to papers by the last two authors making the Riemann-Hilbert correspondence and isomonodromy explicit. For the degenerate fifth Painlevé equation, the moduli spaces for connections and for monodromy are explicitly computed. It is proven that the extended Riemann-Hilbert morphism is an isomorphism. As a consequence these equations have the Painlevé property and the Okamoto-Painlevé space is identified with a moduli space of connections. Using MAPLE computations, one obtains formulas for the degenerate fifth Painlevé equation, for the Bäcklund transformations.
format Article
author Acosta-Humánez, P.B.
van der Put, M.
Top, J.
spellingShingle Acosta-Humánez, P.B.
van der Put, M.
Top, J.
Isomonodromy for the Degenerate Fifth Painlevé Equation
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Acosta-Humánez, P.B.
van der Put, M.
Top, J.
author_sort Acosta-Humánez, P.B.
title Isomonodromy for the Degenerate Fifth Painlevé Equation
title_short Isomonodromy for the Degenerate Fifth Painlevé Equation
title_full Isomonodromy for the Degenerate Fifth Painlevé Equation
title_fullStr Isomonodromy for the Degenerate Fifth Painlevé Equation
title_full_unstemmed Isomonodromy for the Degenerate Fifth Painlevé Equation
title_sort isomonodromy for the degenerate fifth painlevé equation
publisher Інститут математики НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/148586
citation_txt Isomonodromy for the Degenerate Fifth Painlevé Equation / P.B. Acosta-Humánez, M. van der Put, J. Top // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 26 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT acostahumanezpb isomonodromyforthedegeneratefifthpainleveequation
AT vanderputm isomonodromyforthedegeneratefifthpainleveequation
AT topj isomonodromyforthedegeneratefifthpainleveequation
first_indexed 2025-07-12T19:43:06Z
last_indexed 2025-07-12T19:43:06Z
_version_ 1837471520212910080