Bôcher and Abstract Contractions of 2nd Order Quadratic Algebras

Quadratic algebras are generalizations of Lie algebras which include the symmetry algebras of 2nd order superintegrable systems in 2 dimensions as special cases. The superintegrable systems are exactly solvable physical systems in classical and quantum mechanics. Distinct superintegrable systems and...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Escobar Ruiz, M.A., Kalnins, E.G., Miller Jr., W., Subag, E.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148617
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Bôcher and Abstract Contractions of 2nd Order Quadratic Algebras / M.A. Escobar Ruiz, E.G. Kalnins, W. Miller Jr., E. Suba // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 37 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148617
record_format dspace
fulltext
spelling irk-123456789-1486172019-02-19T01:26:59Z Bôcher and Abstract Contractions of 2nd Order Quadratic Algebras Escobar Ruiz, M.A. Kalnins, E.G. Miller Jr., W. Subag, E. Quadratic algebras are generalizations of Lie algebras which include the symmetry algebras of 2nd order superintegrable systems in 2 dimensions as special cases. The superintegrable systems are exactly solvable physical systems in classical and quantum mechanics. Distinct superintegrable systems and their quadratic algebras can be related by geometric contractions, induced by Bôcher contractions of the conformal Lie algebra so(4,C) to itself. In this paper we give a precise definition of Bôcher contractions and show how they can be classified. They subsume well known contractions of e(2,C) and so(3,C) and have important physical and geometric meanings, such as the derivation of the Askey scheme for obtaining all hypergeometric orthogonal polynomials as limits of Racah/Wilson polynomials. We also classify abstract nondegenerate quadratic algebras in terms of an invariant that we call a canonical form. We describe an algorithm for finding the canonical form of such algebras. We calculate explicitly all canonical forms arising from quadratic algebras of 2D nondegenerate superintegrable systems on constant curvature spaces and Darboux spaces. We further discuss contraction of quadratic algebras, focusing on those coming from superintegrable systems. 2017 Article Bôcher and Abstract Contractions of 2nd Order Quadratic Algebras / M.A. Escobar Ruiz, E.G. Kalnins, W. Miller Jr., E. Suba // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 37 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 22E70; 16G99; 37J35; 37K10; 33C45; 17B60; 81R05; 33C45 DOI:10.3842/SIGMA.2017.013 http://dspace.nbuv.gov.ua/handle/123456789/148617 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Quadratic algebras are generalizations of Lie algebras which include the symmetry algebras of 2nd order superintegrable systems in 2 dimensions as special cases. The superintegrable systems are exactly solvable physical systems in classical and quantum mechanics. Distinct superintegrable systems and their quadratic algebras can be related by geometric contractions, induced by Bôcher contractions of the conformal Lie algebra so(4,C) to itself. In this paper we give a precise definition of Bôcher contractions and show how they can be classified. They subsume well known contractions of e(2,C) and so(3,C) and have important physical and geometric meanings, such as the derivation of the Askey scheme for obtaining all hypergeometric orthogonal polynomials as limits of Racah/Wilson polynomials. We also classify abstract nondegenerate quadratic algebras in terms of an invariant that we call a canonical form. We describe an algorithm for finding the canonical form of such algebras. We calculate explicitly all canonical forms arising from quadratic algebras of 2D nondegenerate superintegrable systems on constant curvature spaces and Darboux spaces. We further discuss contraction of quadratic algebras, focusing on those coming from superintegrable systems.
format Article
author Escobar Ruiz, M.A.
Kalnins, E.G.
Miller Jr., W.
Subag, E.
spellingShingle Escobar Ruiz, M.A.
Kalnins, E.G.
Miller Jr., W.
Subag, E.
Bôcher and Abstract Contractions of 2nd Order Quadratic Algebras
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Escobar Ruiz, M.A.
Kalnins, E.G.
Miller Jr., W.
Subag, E.
author_sort Escobar Ruiz, M.A.
title Bôcher and Abstract Contractions of 2nd Order Quadratic Algebras
title_short Bôcher and Abstract Contractions of 2nd Order Quadratic Algebras
title_full Bôcher and Abstract Contractions of 2nd Order Quadratic Algebras
title_fullStr Bôcher and Abstract Contractions of 2nd Order Quadratic Algebras
title_full_unstemmed Bôcher and Abstract Contractions of 2nd Order Quadratic Algebras
title_sort bôcher and abstract contractions of 2nd order quadratic algebras
publisher Інститут математики НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/148617
citation_txt Bôcher and Abstract Contractions of 2nd Order Quadratic Algebras / M.A. Escobar Ruiz, E.G. Kalnins, W. Miller Jr., E. Suba // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 37 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT escobarruizma bocherandabstractcontractionsof2ndorderquadraticalgebras
AT kalninseg bocherandabstractcontractionsof2ndorderquadraticalgebras
AT millerjrw bocherandabstractcontractionsof2ndorderquadraticalgebras
AT subage bocherandabstractcontractionsof2ndorderquadraticalgebras
first_indexed 2025-07-12T19:47:21Z
last_indexed 2025-07-12T19:47:21Z
_version_ 1837471779944136704