Ermakov-Painlevé II Symmetry Reduction of a Korteweg Capillarity System
A class of nonlinear Schrödinger equations involving a triad of power law terms together with a de Broglie-Bohm potential is shown to admit symmetry reduction to a hybrid Ermakov-Painlevé II equation which is linked, in turn, to the integrable Painlevé XXXIV equation. A nonlinear Schrödinger encapsu...
Gespeichert in:
Datum: | 2017 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2017
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/148621 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Ermakov-Painlevé II Symmetry Reduction of a Korteweg Capillarity System / C. Rogers, P.A. Clarkson // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 92 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | A class of nonlinear Schrödinger equations involving a triad of power law terms together with a de Broglie-Bohm potential is shown to admit symmetry reduction to a hybrid Ermakov-Painlevé II equation which is linked, in turn, to the integrable Painlevé XXXIV equation. A nonlinear Schrödinger encapsulation of a Korteweg-type capillary system is thereby used in the isolation of such a Ermakov-Painlevé II reduction valid for a multi-parameter class of free energy functions. Iterated application of a Bäcklund transformation then allows the construction of novel classes of exact solutions of the nonlinear capillarity system in terms of Yablonskii-Vorob'ev polynomials or classical Airy functions. A Painlevé XXXIV equation is derived for the density in the capillarity system and seen to correspond to the symmetry reduction of its Bernoulli integral of motion. |
---|