Ermakov-Painlevé II Symmetry Reduction of a Korteweg Capillarity System

A class of nonlinear Schrödinger equations involving a triad of power law terms together with a de Broglie-Bohm potential is shown to admit symmetry reduction to a hybrid Ermakov-Painlevé II equation which is linked, in turn, to the integrable Painlevé XXXIV equation. A nonlinear Schrödinger encapsu...

Full description

Saved in:
Bibliographic Details
Date:2017
Main Authors: Rogers, C., Clarkson, P.A.
Format: Article
Language:English
Published: Інститут математики НАН України 2017
Series:Symmetry, Integrability and Geometry: Methods and Applications
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/148621
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Ermakov-Painlevé II Symmetry Reduction of a Korteweg Capillarity System / C. Rogers, P.A. Clarkson // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 92 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine