Local Generalized Symmetries and Locally Symmetric Parabolic Geometries

We investigate (local) automorphisms of parabolic geometries that generalize geodesic symmetries. We show that many types of parabolic geometries admit at most one generalized geodesic symmetry at a point with non-zero harmonic curvature. Moreover, we show that if there is exactly one symmetry at ea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2017
Hauptverfasser: Gregorovič, J., Zalabová, L.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2017
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/148627
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Local Generalized Symmetries and Locally Symmetric Parabolic Geometries / J. Gregorovič, L. Zalabová // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 25 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We investigate (local) automorphisms of parabolic geometries that generalize geodesic symmetries. We show that many types of parabolic geometries admit at most one generalized geodesic symmetry at a point with non-zero harmonic curvature. Moreover, we show that if there is exactly one symmetry at each point, then the parabolic geometry is a generalization of an affine (locally) symmetric space.