A Linear System of Differential Equations Related to Vector-Valued Jack Polynomials on the Torus

For each irreducible module of the symmetric group SN there is a set of parametrized nonsymmetric Jack polynomials in N variables taking values in the module. These polynomials are simultaneous eigenfunctions of a commutative set of operators, self-adjoint with respect to two Hermitian forms, one ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2017
1. Verfasser: Dunkl, C.F.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2017
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/148638
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:A Linear System of Differential Equations Related to Vector-Valued Jack Polynomials on the Torus / C.F. Dunkl // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 11 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:For each irreducible module of the symmetric group SN there is a set of parametrized nonsymmetric Jack polynomials in N variables taking values in the module. These polynomials are simultaneous eigenfunctions of a commutative set of operators, self-adjoint with respect to two Hermitian forms, one called the contravariant form and the other is with respect to a matrix-valued measure on the N-torus. The latter is valid for the parameter lying in an interval about zero which depends on the module. The author in a previous paper [SIGMA 12 (2016), 033, 27 pages] proved the existence of the measure and that its absolutely continuous part satisfies a system of linear differential equations. In this paper the system is analyzed in detail. The N-torus is divided into (N−1)! connected components by the hyperplanes xi=xj, i<j, which are the singularities of the system. The main result is that the orthogonality measure has no singular part with respect to Haar measure, and thus is given by a matrix function times Haar measure. This function is analytic on each of the connected components.