A Linear System of Differential Equations Related to Vector-Valued Jack Polynomials on the Torus
For each irreducible module of the symmetric group SN there is a set of parametrized nonsymmetric Jack polynomials in N variables taking values in the module. These polynomials are simultaneous eigenfunctions of a commutative set of operators, self-adjoint with respect to two Hermitian forms, one ca...
Saved in:
Date: | 2017 |
---|---|
Main Author: | Dunkl, C.F. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2017
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/148638 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | A Linear System of Differential Equations Related to Vector-Valued Jack Polynomials on the Torus / C.F. Dunkl // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 11 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Orthogonality Measure on the Torus for Vector-Valued Jack Polynomials
by: Dunkl, C.F.
Published: (2016) -
Vector-Valued Jack Polynomials from Scratch
by: Dunkl, C.F., et al.
Published: (2011) -
Vector-Valued Polynomials and a Matrix Weight Function with B₂-Action
by: Dunkl, C.F.
Published: (2013) -
Vector-Valued Polynomials and a Matrix Weight Function with B₂-Action. II
by: Dunkl, C.F.
Published: (2013) -
Vector Polynomials and a Matrix Weight Associated to Dihedral Groups
by: Dunkl, C.F.
Published: (2014)