Hecke Transformations of Conformal Blocks in WZW Theory. I. KZB Equations for Non-Trivial Bundles
We describe new families of the Knizhnik-Zamolodchikov-Bernard (KZB) equations related to the WZW-theory corresponding to the adjoint G-bundles of different topological types over complex curves Σg,n of genus g with n marked points. The bundles are defined by their characteristic classes - elements...
Gespeichert in:
Datum: | 2012 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2012
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/148657 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Hecke Transformations of Conformal Blocks in WZW Theory. I. KZB Equations for Non-Trivial Bundles / A.M. Levin, M.A. Olshanetsky, A.V. Smirnov, A.V. Zotov // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 74 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | We describe new families of the Knizhnik-Zamolodchikov-Bernard (KZB) equations related to the WZW-theory corresponding to the adjoint G-bundles of different topological types over complex curves Σg,n of genus g with n marked points. The bundles are defined by their characteristic classes - elements of H²(Σg,n,Z(G)), where Z(G) is a center of the simple complex Lie group G. The KZB equations are the horizontality condition for the projectively flat connection (the KZB connection) defined on the bundle of conformal blocks over the moduli space of curves. The space of conformal blocks has been known to be decomposed into a few sectors corresponding to the characteristic classes of the underlying bundles. The KZB connection preserves these sectors. In this paper we construct the connection explicitly for elliptic curves with marked points and prove its flatness. |
---|