Hecke Transformations of Conformal Blocks in WZW Theory. I. KZB Equations for Non-Trivial Bundles

We describe new families of the Knizhnik-Zamolodchikov-Bernard (KZB) equations related to the WZW-theory corresponding to the adjoint G-bundles of different topological types over complex curves Σg,n of genus g with n marked points. The bundles are defined by their characteristic classes - elements...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2012
Hauptverfasser: Levin, A.M., Olshanetsky, M.A., Smirnov, A.V., Zotov, A.V.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2012
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/148657
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Hecke Transformations of Conformal Blocks in WZW Theory. I. KZB Equations for Non-Trivial Bundles / A.M. Levin, M.A. Olshanetsky, A.V. Smirnov, A.V. Zotov // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 74 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148657
record_format dspace
fulltext
spelling irk-123456789-1486572019-02-19T01:27:59Z Hecke Transformations of Conformal Blocks in WZW Theory. I. KZB Equations for Non-Trivial Bundles Levin, A.M. Olshanetsky, M.A. Smirnov, A.V. Zotov, A.V. We describe new families of the Knizhnik-Zamolodchikov-Bernard (KZB) equations related to the WZW-theory corresponding to the adjoint G-bundles of different topological types over complex curves Σg,n of genus g with n marked points. The bundles are defined by their characteristic classes - elements of H²(Σg,n,Z(G)), where Z(G) is a center of the simple complex Lie group G. The KZB equations are the horizontality condition for the projectively flat connection (the KZB connection) defined on the bundle of conformal blocks over the moduli space of curves. The space of conformal blocks has been known to be decomposed into a few sectors corresponding to the characteristic classes of the underlying bundles. The KZB connection preserves these sectors. In this paper we construct the connection explicitly for elliptic curves with marked points and prove its flatness. 2012 Article Hecke Transformations of Conformal Blocks in WZW Theory. I. KZB Equations for Non-Trivial Bundles / A.M. Levin, M.A. Olshanetsky, A.V. Smirnov, A.V. Zotov // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 74 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 14H70; 32G34; 14H60 DOI: http://dx.doi.org/10.3842/SIGMA.2012.095 http://dspace.nbuv.gov.ua/handle/123456789/148657 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We describe new families of the Knizhnik-Zamolodchikov-Bernard (KZB) equations related to the WZW-theory corresponding to the adjoint G-bundles of different topological types over complex curves Σg,n of genus g with n marked points. The bundles are defined by their characteristic classes - elements of H²(Σg,n,Z(G)), where Z(G) is a center of the simple complex Lie group G. The KZB equations are the horizontality condition for the projectively flat connection (the KZB connection) defined on the bundle of conformal blocks over the moduli space of curves. The space of conformal blocks has been known to be decomposed into a few sectors corresponding to the characteristic classes of the underlying bundles. The KZB connection preserves these sectors. In this paper we construct the connection explicitly for elliptic curves with marked points and prove its flatness.
format Article
author Levin, A.M.
Olshanetsky, M.A.
Smirnov, A.V.
Zotov, A.V.
spellingShingle Levin, A.M.
Olshanetsky, M.A.
Smirnov, A.V.
Zotov, A.V.
Hecke Transformations of Conformal Blocks in WZW Theory. I. KZB Equations for Non-Trivial Bundles
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Levin, A.M.
Olshanetsky, M.A.
Smirnov, A.V.
Zotov, A.V.
author_sort Levin, A.M.
title Hecke Transformations of Conformal Blocks in WZW Theory. I. KZB Equations for Non-Trivial Bundles
title_short Hecke Transformations of Conformal Blocks in WZW Theory. I. KZB Equations for Non-Trivial Bundles
title_full Hecke Transformations of Conformal Blocks in WZW Theory. I. KZB Equations for Non-Trivial Bundles
title_fullStr Hecke Transformations of Conformal Blocks in WZW Theory. I. KZB Equations for Non-Trivial Bundles
title_full_unstemmed Hecke Transformations of Conformal Blocks in WZW Theory. I. KZB Equations for Non-Trivial Bundles
title_sort hecke transformations of conformal blocks in wzw theory. i. kzb equations for non-trivial bundles
publisher Інститут математики НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/148657
citation_txt Hecke Transformations of Conformal Blocks in WZW Theory. I. KZB Equations for Non-Trivial Bundles / A.M. Levin, M.A. Olshanetsky, A.V. Smirnov, A.V. Zotov // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 74 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT levinam hecketransformationsofconformalblocksinwzwtheoryikzbequationsfornontrivialbundles
AT olshanetskyma hecketransformationsofconformalblocksinwzwtheoryikzbequationsfornontrivialbundles
AT smirnovav hecketransformationsofconformalblocksinwzwtheoryikzbequationsfornontrivialbundles
AT zotovav hecketransformationsofconformalblocksinwzwtheoryikzbequationsfornontrivialbundles
first_indexed 2025-07-12T19:54:46Z
last_indexed 2025-07-12T19:54:46Z
_version_ 1837472244700282880