Solutions of the Dirac Equation in a Magnetic Field and Intertwining Operators

The intertwining technique has been widely used to study the Schrödinger equation and to generate new Hamiltonians with known spectra. This technique can be adapted to find the bound states of certain Dirac Hamiltonians. In this paper the system to be solved is a relativistic particle placed in a ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2012
Hauptverfasser: Contreras-Astorga, A., J. Fernández C., D., Negro, J.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2012
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/148666
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Solutions of the Dirac Equation in a Magnetic Field and Intertwining Operators / A. Contreras-Astorga, D. J. Fernández C., J. Negro // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 21 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:The intertwining technique has been widely used to study the Schrödinger equation and to generate new Hamiltonians with known spectra. This technique can be adapted to find the bound states of certain Dirac Hamiltonians. In this paper the system to be solved is a relativistic particle placed in a magnetic field with cylindrical symmetry whose intensity decreases as the distance to the symmetry axis grows and its field lines are parallel to the x−y plane. It will be shown that the Hamiltonian under study turns out to be shape invariant.