Solutions of the Dirac Equation in a Magnetic Field and Intertwining Operators
The intertwining technique has been widely used to study the Schrödinger equation and to generate new Hamiltonians with known spectra. This technique can be adapted to find the bound states of certain Dirac Hamiltonians. In this paper the system to be solved is a relativistic particle placed in a ma...
Gespeichert in:
Datum: | 2012 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2012
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/148666 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Solutions of the Dirac Equation in a Magnetic Field and Intertwining Operators / A. Contreras-Astorga, D. J. Fernández C., J. Negro // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 21 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148666 |
---|---|
record_format |
dspace |
fulltext |
|
spelling |
irk-123456789-1486662019-02-19T01:23:43Z Solutions of the Dirac Equation in a Magnetic Field and Intertwining Operators Contreras-Astorga, A. J. Fernández C., D. Negro, J. The intertwining technique has been widely used to study the Schrödinger equation and to generate new Hamiltonians with known spectra. This technique can be adapted to find the bound states of certain Dirac Hamiltonians. In this paper the system to be solved is a relativistic particle placed in a magnetic field with cylindrical symmetry whose intensity decreases as the distance to the symmetry axis grows and its field lines are parallel to the x−y plane. It will be shown that the Hamiltonian under study turns out to be shape invariant. 2012 Article Solutions of the Dirac Equation in a Magnetic Field and Intertwining Operators / A. Contreras-Astorga, D. J. Fernández C., J. Negro // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 21 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 81Q05; 81Q60; 81Q80 DOI: http://dx.doi.org/10.3842/SIGMA.2012.082 http://dspace.nbuv.gov.ua/handle/123456789/148666 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The intertwining technique has been widely used to study the Schrödinger equation and to generate new Hamiltonians with known spectra. This technique can be adapted to find the bound states of certain Dirac Hamiltonians. In this paper the system to be solved is a relativistic particle placed in a magnetic field with cylindrical symmetry whose intensity decreases as the distance to the symmetry axis grows and its field lines are parallel to the x−y plane. It will be shown that the Hamiltonian under study turns out to be shape invariant. |
format |
Article |
author |
Contreras-Astorga, A. J. Fernández C., D. Negro, J. |
spellingShingle |
Contreras-Astorga, A. J. Fernández C., D. Negro, J. Solutions of the Dirac Equation in a Magnetic Field and Intertwining Operators Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Contreras-Astorga, A. J. Fernández C., D. Negro, J. |
author_sort |
Contreras-Astorga, A. |
title |
Solutions of the Dirac Equation in a Magnetic Field and Intertwining Operators |
title_short |
Solutions of the Dirac Equation in a Magnetic Field and Intertwining Operators |
title_full |
Solutions of the Dirac Equation in a Magnetic Field and Intertwining Operators |
title_fullStr |
Solutions of the Dirac Equation in a Magnetic Field and Intertwining Operators |
title_full_unstemmed |
Solutions of the Dirac Equation in a Magnetic Field and Intertwining Operators |
title_sort |
solutions of the dirac equation in a magnetic field and intertwining operators |
publisher |
Інститут математики НАН України |
publishDate |
2012 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148666 |
citation_txt |
Solutions of the Dirac Equation in a Magnetic Field and Intertwining Operators / A. Contreras-Astorga, D. J. Fernández C., J. Negro // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 21 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT contrerasastorgaa solutionsofthediracequationinamagneticfieldandintertwiningoperators AT jfernandezcd solutionsofthediracequationinamagneticfieldandintertwiningoperators AT negroj solutionsofthediracequationinamagneticfieldandintertwiningoperators |
first_indexed |
2025-07-12T19:55:36Z |
last_indexed |
2025-07-12T19:55:36Z |
_version_ |
1837472297588359168 |