Solutions of the Dirac Equation in a Magnetic Field and Intertwining Operators

The intertwining technique has been widely used to study the Schrödinger equation and to generate new Hamiltonians with known spectra. This technique can be adapted to find the bound states of certain Dirac Hamiltonians. In this paper the system to be solved is a relativistic particle placed in a ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2012
Hauptverfasser: Contreras-Astorga, A., J. Fernández C., D., Negro, J.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2012
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/148666
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Solutions of the Dirac Equation in a Magnetic Field and Intertwining Operators / A. Contreras-Astorga, D. J. Fernández C., J. Negro // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 21 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148666
record_format dspace
fulltext
spelling irk-123456789-1486662019-02-19T01:23:43Z Solutions of the Dirac Equation in a Magnetic Field and Intertwining Operators Contreras-Astorga, A. J. Fernández C., D. Negro, J. The intertwining technique has been widely used to study the Schrödinger equation and to generate new Hamiltonians with known spectra. This technique can be adapted to find the bound states of certain Dirac Hamiltonians. In this paper the system to be solved is a relativistic particle placed in a magnetic field with cylindrical symmetry whose intensity decreases as the distance to the symmetry axis grows and its field lines are parallel to the x−y plane. It will be shown that the Hamiltonian under study turns out to be shape invariant. 2012 Article Solutions of the Dirac Equation in a Magnetic Field and Intertwining Operators / A. Contreras-Astorga, D. J. Fernández C., J. Negro // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 21 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 81Q05; 81Q60; 81Q80 DOI: http://dx.doi.org/10.3842/SIGMA.2012.082 http://dspace.nbuv.gov.ua/handle/123456789/148666 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The intertwining technique has been widely used to study the Schrödinger equation and to generate new Hamiltonians with known spectra. This technique can be adapted to find the bound states of certain Dirac Hamiltonians. In this paper the system to be solved is a relativistic particle placed in a magnetic field with cylindrical symmetry whose intensity decreases as the distance to the symmetry axis grows and its field lines are parallel to the x−y plane. It will be shown that the Hamiltonian under study turns out to be shape invariant.
format Article
author Contreras-Astorga, A.
J. Fernández C., D.
Negro, J.
spellingShingle Contreras-Astorga, A.
J. Fernández C., D.
Negro, J.
Solutions of the Dirac Equation in a Magnetic Field and Intertwining Operators
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Contreras-Astorga, A.
J. Fernández C., D.
Negro, J.
author_sort Contreras-Astorga, A.
title Solutions of the Dirac Equation in a Magnetic Field and Intertwining Operators
title_short Solutions of the Dirac Equation in a Magnetic Field and Intertwining Operators
title_full Solutions of the Dirac Equation in a Magnetic Field and Intertwining Operators
title_fullStr Solutions of the Dirac Equation in a Magnetic Field and Intertwining Operators
title_full_unstemmed Solutions of the Dirac Equation in a Magnetic Field and Intertwining Operators
title_sort solutions of the dirac equation in a magnetic field and intertwining operators
publisher Інститут математики НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/148666
citation_txt Solutions of the Dirac Equation in a Magnetic Field and Intertwining Operators / A. Contreras-Astorga, D. J. Fernández C., J. Negro // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 21 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT contrerasastorgaa solutionsofthediracequationinamagneticfieldandintertwiningoperators
AT jfernandezcd solutionsofthediracequationinamagneticfieldandintertwiningoperators
AT negroj solutionsofthediracequationinamagneticfieldandintertwiningoperators
first_indexed 2025-07-12T19:55:36Z
last_indexed 2025-07-12T19:55:36Z
_version_ 1837472297588359168