'Magic' Configurations of Three-Qubit Observables and Geometric Hyperplanes of the Smallest Split Cayley Hexagon
Recently Waegell and Aravind [J. Phys. A: Math. Theor. 45 (2012), 405301, 13 pages] have given a number of distinct sets of three-qubit observables, each furnishing a proof of the Kochen-Specker theorem. Here it is demonstrated that two of these sets/configurations, namely the 18₂−12₃ and 2₄14₂−4₃6₄...
Saved in:
Date: | 2012 |
---|---|
Main Authors: | Saniga, M., Planat, M., Pracna, P., Lévay, P. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2012
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/148670 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | 'Magic' Configurations of Three-Qubit Observables and Geometric Hyperplanes of the Smallest Split Cayley Hexagon / M. Saniga, M. Planat, P. Pracna, P. Lévay // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 19 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Twin ''Fano-Snowflakes'' over the Smallest Ring of Ternions
by: Saniga, M., et al.
Published: (2008) -
The Veldkamp Space of Two-Qubits
by: Saniga, M., et al.
Published: (2007) -
A Notable Relation between n-Qubit and 2ⁿ⁻¹-Qubit Pauli Groups via Binary LGr(n,2n)
by: Holweck, F., et al.
Published: (2014) -
A Jacobson Radical Decomposition of the Fano-Snowflake Configuration
by: Saniga, M., et al.
Published: (2008) -
Nonredundant Hexagonal Grid Interferometer Configurations with Element-Free Central Domains
by: Kopilovich, L.E.
Published: (2004)