Construction of a Lax Pair for the E₆⁽¹⁾ q-Painlevé System
We construct a Lax pair for the E₆⁽¹⁾ q-Painlevé system from first principles by employing the general theory of semi-classical orthogonal polynomial systems characterised by divided-difference operators on discrete, quadratic lattices [arXiv:1204.2328]. Our study treats one special case of such lat...
Gespeichert in:
Datum: | 2012 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2012
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/148694 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Construction of a Lax Pair for the E₆⁽¹⁾ q-Painlevé System / N.S. Witte, C.M. Ormerod // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 18 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | We construct a Lax pair for the E₆⁽¹⁾ q-Painlevé system from first principles by employing the general theory of semi-classical orthogonal polynomial systems characterised by divided-difference operators on discrete, quadratic lattices [arXiv:1204.2328]. Our study treats one special case of such lattices - the q-linear lattice - through a natural generalisation of the big q-Jacobi weight. As a by-product of our construction we derive the coupled first-order q-difference equations for the E₆⁽¹⁾ q-Painlevé system, thus verifying our identification. Finally we establish the correspondences of our result with the Lax pairs given earlier and separately by Sakai and Yamada, through explicit transformations. |
---|