Relativistic DNLS and Kaup-Newell Hierarchy
By the recursion operator of the Kaup-Newell hierarchy we construct the relativistic derivative NLS (RDNLS) equation and the corresponding Lax pair. In the nonrelativistic limit c→∞ it reduces to DNLS equation and preserves integrability at any order of relativistic corrections. The compact explicit...
Збережено в:
Дата: | 2017 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2017
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148742 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Relativistic DNLS and Kaup-Newell Hierarchy / O.K. Pashaev, J.-H. Lee // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 14 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | By the recursion operator of the Kaup-Newell hierarchy we construct the relativistic derivative NLS (RDNLS) equation and the corresponding Lax pair. In the nonrelativistic limit c→∞ it reduces to DNLS equation and preserves integrability at any order of relativistic corrections. The compact explicit representation of the linear problem for this equation becomes possible due to notions of the q-calculus with two bases, one of which is the recursion operator, and another one is the spectral parameter. |
---|