A Generalization of the Doubling Construction for Sums of Squares Identities
The doubling construction is a fast and important way to generate new solutions to the Hurwitz problem on sums of squares identities from any known ones. In this short note, we generalize the doubling construction and obtain from any given admissible triple [r,s,m] a series of new ones [r+ρ(2ⁿ⁻¹),2ⁿ...
Gespeichert in:
Datum: | 2017 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2017
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/148756 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | A Generalization of the Doubling Construction for Sums of Squares Identities / C. Zhang, H.L. Huang // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 9 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | The doubling construction is a fast and important way to generate new solutions to the Hurwitz problem on sums of squares identities from any known ones. In this short note, we generalize the doubling construction and obtain from any given admissible triple [r,s,m] a series of new ones [r+ρ(2ⁿ⁻¹),2ⁿs,2ⁿm] for all positive integer n, where ρ is the Hurwitz-Radon function. |
---|