A Generalization of the Doubling Construction for Sums of Squares Identities

The doubling construction is a fast and important way to generate new solutions to the Hurwitz problem on sums of squares identities from any known ones. In this short note, we generalize the doubling construction and obtain from any given admissible triple [r,s,m] a series of new ones [r+ρ(2ⁿ⁻¹),2ⁿ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2017
Hauptverfasser: Zhang, C., Huang, H.L.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2017
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/148756
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:A Generalization of the Doubling Construction for Sums of Squares Identities / C. Zhang, H.L. Huang // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:The doubling construction is a fast and important way to generate new solutions to the Hurwitz problem on sums of squares identities from any known ones. In this short note, we generalize the doubling construction and obtain from any given admissible triple [r,s,m] a series of new ones [r+ρ(2ⁿ⁻¹),2ⁿs,2ⁿm] for all positive integer n, where ρ is the Hurwitz-Radon function.