N -Bright-Dark Soliton Solution to a Semi-Discrete Vector Nonlinear Schrödinger Equation
In this paper, a general bright-dark soliton solution in the form of Pfaffian is constructed for an integrable semi-discrete vector NLS equation via Hirota's bilinear method. One- and two-bright-dark soliton solutions are explicitly presented for two-component semi-discrete NLS equation; two-br...
Збережено в:
Дата: | 2017 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2017
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148759 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | N -Bright-Dark Soliton Solution to a Semi-Discrete Vector Nonlinear Schrödinger Equation / B.-F. Feng, Y. Ohta // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 51 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148759 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1487592019-02-19T01:24:56Z N -Bright-Dark Soliton Solution to a Semi-Discrete Vector Nonlinear Schrödinger Equation Feng, B.-F. Ohta, Y. In this paper, a general bright-dark soliton solution in the form of Pfaffian is constructed for an integrable semi-discrete vector NLS equation via Hirota's bilinear method. One- and two-bright-dark soliton solutions are explicitly presented for two-component semi-discrete NLS equation; two-bright-one-dark, and one-bright-two-dark soliton solutions are also given explicitly for three-component semi-discrete NLS equation. The asymptotic behavior is analysed for two-soliton solutions. 2017 Article N -Bright-Dark Soliton Solution to a Semi-Discrete Vector Nonlinear Schrödinger Equation / B.-F. Feng, Y. Ohta // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 51 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 39A10; 35Q55 DOI:10.3842/SIGMA.2017.071 http://dspace.nbuv.gov.ua/handle/123456789/148759 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In this paper, a general bright-dark soliton solution in the form of Pfaffian is constructed for an integrable semi-discrete vector NLS equation via Hirota's bilinear method. One- and two-bright-dark soliton solutions are explicitly presented for two-component semi-discrete NLS equation; two-bright-one-dark, and one-bright-two-dark soliton solutions are also given explicitly for three-component semi-discrete NLS equation. The asymptotic behavior is analysed for two-soliton solutions. |
format |
Article |
author |
Feng, B.-F. Ohta, Y. |
spellingShingle |
Feng, B.-F. Ohta, Y. N -Bright-Dark Soliton Solution to a Semi-Discrete Vector Nonlinear Schrödinger Equation Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Feng, B.-F. Ohta, Y. |
author_sort |
Feng, B.-F. |
title |
N -Bright-Dark Soliton Solution to a Semi-Discrete Vector Nonlinear Schrödinger Equation |
title_short |
N -Bright-Dark Soliton Solution to a Semi-Discrete Vector Nonlinear Schrödinger Equation |
title_full |
N -Bright-Dark Soliton Solution to a Semi-Discrete Vector Nonlinear Schrödinger Equation |
title_fullStr |
N -Bright-Dark Soliton Solution to a Semi-Discrete Vector Nonlinear Schrödinger Equation |
title_full_unstemmed |
N -Bright-Dark Soliton Solution to a Semi-Discrete Vector Nonlinear Schrödinger Equation |
title_sort |
n -bright-dark soliton solution to a semi-discrete vector nonlinear schrödinger equation |
publisher |
Інститут математики НАН України |
publishDate |
2017 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148759 |
citation_txt |
N -Bright-Dark Soliton Solution to a Semi-Discrete Vector Nonlinear Schrödinger Equation / B.-F. Feng, Y. Ohta // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 51 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT fengbf nbrightdarksolitonsolutiontoasemidiscretevectornonlinearschrodingerequation AT ohtay nbrightdarksolitonsolutiontoasemidiscretevectornonlinearschrodingerequation |
first_indexed |
2025-07-12T20:10:44Z |
last_indexed |
2025-07-12T20:10:44Z |
_version_ |
1837473255576829952 |
fulltext |
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 13 (2017), 071, 16 pages
N -Bright-Dark Soliton Solution to a Semi-Discrete
Vector Nonlinear Schrödinger Equation
Bao-Feng FENG † and Yasuhiro OHTA ‡
† School of Mathematical and Statistical Sciences, The University of Texas Rio Grande Valley,
Edinburg, TX 78539, USA
E-mail: baofeng.feng@utrgv.edu
‡ Department of Mathematics, Kobe University, Rokko, Kobe 657-8501, Japan
E-mail: ohta@math.kobe-u.ac.jp
Received April 25, 2017, in final form September 03, 2017; Published online September 06, 2017
https://doi.org/10.3842/SIGMA.2017.071
Abstract. In this paper, a general bright-dark soliton solution in the form of Pfaffian is
constructed for an integrable semi-discrete vector NLS equation via Hirota’s bilinear method.
One- and two-bright-dark soliton solutions are explicitly presented for two-component semi-
discrete NLS equation; two-bright-one-dark, and one-bright-two-dark soliton solutions are
also given explicitly for three-component semi-discrete NLS equation. The asymptotic be-
havior is analysed for two-soliton solutions.
Key words: bright-dark soliton; semi-discrete vector NLS equation; Hirota’s bilinear method;
Pfaffian
2010 Mathematics Subject Classification: 39A10; 35Q55
1 Introduction
The nonlinear Schrödinger (NLS) equation
iut = uxx + 2σ|u|2u
is a generic model equation describing the evolution of small amplitude and slowly varying wave
packets in weakly nonlinear media [2, 6, 8, 18, 23]. It arises in a variety of physical contexts
such as nonlinear optics [19, 20], Bose–Einstein condensates [14], water waves [13] and plasma
physics [48]. The integrability, as well as the bright-soliton solution in the focusing case (σ = 1),
was found by Zakharov and Shabat [49, 50]. The dark soliton was found in the defocusing NLS
equation (σ = −1) [20, 25, 42], and was observed experimentally in [24, 46].
The integrable discretization of nonlinear Schrödinger equation
iqn,t =
(
1 + σ|qn|2
)
(qn+1 + qn−1)
was originally derived by Ablowitz and Ladik [3, 4], so it is also called the Ablowitz–Ladik (AL)
lattice equation. Similar to the continuous case, it is known that the AL lattice equation, by
Hirota’s bilinear method, admits the bright soliton solution for the focusing case (σ = 1) [28, 41],
also the dark soliton solution for the defocusing case (σ = −1) [27]. The inverse scattering
transform (IST) has been developed by several authors in the literature [1, 36, 43, 44]. The
geometric construction of the AL lattice equation was given by Doliwa and Santini [15].
This paper is a contribution to the Special Issue on Symmetries and Integrability of Difference Equations.
The full collection is available at http://www.emis.de/journals/SIGMA/SIDE12.html
mailto:baofeng.feng@utrgv.edu
mailto:ohta@math.kobe-u.ac.jp
https://doi.org/10.3842/SIGMA.2017.071
http://www.emis.de/journals/SIGMA/SIDE12.html
2 B.-F. Feng and Y. Ohta
The coupled nonlinear Schrödinger equation
iut = uxx + 2
(
σ1|u|2 + σ2|v|2
)
u,
ivt = vxx + 2
(
σ1|u|2 + σ2|v|2
)
v,
(1.1)
where σi = ±1, i = 1, 2, was firstly recognized being integrable by Yajima and Oikawa [47].
For the focusing-focusing case (σ1 = σ2 = 1), the system (1.1) solved by Manakov via inverse
scattering transform (IST), admits the bright-bright soliton solution [26], so it is also called
the Manakov system in the literature. For the defocusing-defocusing case, the Manakov system
admits bright-dark and dark-dark soliton solution [35, 37, 38]. However, the focusing-defocusing
Manakov system admits all types of soliton solutions such as bright-bright solitons, dark-dark
soliton, and bright-dark solitons [22, 33, 45]. The Manakov system can be easily extended to
a multi-component case, the so-called vector NLS equation. For the continuous vector NLS equa-
tion, the N -bright soliton solution was obtained in [16, 22, 51]; the general bright-dark and dark-
dark soliton solutions were obtained in [16, 17, 25, 34, 45]. The inverse scattering transform with
nonvanishing boundary condition was solved by Prinari, Ablowitz and Biondini [35]. We should
remark here that the problem of constructing exact soliton solutions to the vector NLS equation
and proving their nonsingularity was settled by Dubrovin et al. in their landmark paper [16].
The semi-discrete coupled nonlinear Schrödinger equation
iq
(1)
n,t =
(
1 + σ1
∣∣q(1)
n
∣∣2 + σ2
∣∣q(2)
n
∣∣2)(q(1)
n+1 + q
(1)
n−1
)
,
iq
(2)
n,t =
(
1 + σ1
∣∣q(1)
n
∣∣2 + σ2
∣∣q(2)
n
∣∣2)(q(2)
n+1 + q
(2)
n−1
)
, (1.2)
where σi = ±1, i = 1, 2, is of importance both mathematically and physically. It was solved
by the inverse scattering transform (IST) in [39, 40]. The general multi-soliton solution in
terms of Pfaffians was found by one of the authors recently [31], which is of bright type for
the focusing-focusing case (σ1 = σ2 = 1), and is of dark type for the defocusing-defocusing
case (σ1 = σ2 = −1). However, as far as we know, no general mixed-type (bright-dark) soliton
solution is reported in the literature, which motivated the present study.
In the present paper, we consider a M -coupled semi-discrete NLS equation of all types
iq
(j)
n,t =
1 +
M∑
µ=1
σµ
∣∣q(µ)
n
∣∣2(q(j)
n+1 + q
(j)
n−1
)
, j = 1, 2, . . . ,M, (1.3)
where σµ = ±1 for µ = 1, . . .M . For all-focusing case (σµ = 1, µ = 1, . . . ,M), its general
N -bright soliton solution and the interactions among solitons were studied in [5, 29]. However,
in contrast with a complete list of the general N -soliton solution to the vector NLS equation [17],
the mixed-type soliton solution of all possible nonlinearities (all possible values of σµ) is missing.
The aim of the present paper is to construct a general N -bright-dark soliton solution to the semi-
discrete vector NLS equation. The rest of the paper is organized as follows. In Section 2, we
provide a general bright-dark soliton solution in terms of Pfaffians to the semi-discrete vector
NLS equation (1.3) and give a rigorous proof by the Pfaffian technique [21, 30, 32]. The
one- and two-soliton solutions to two-coupled and three-coupled semi-discrete NLS equation are
provided explicitly, respectively, in Section 3. We summarize the paper in Section 4 and present
asymptotic analysis for two-soliton solution in Appendix A.
2 General bright-dark soliton solution
to semi-discrete vector NLS equation
Let us consider a general soliton solution consisting of m-bright solitons and (M − m)-dark
solitons to the semi-discrete vector NLS equation (1.3). To this end, we introduce the following
N -Bright-Dark Soliton Solution to a Vector SDNLS Equation 3
dependent variable transformations
q(j)
n = in
g
(j)
n
fn
, q(m+l)
n = ρl(ial)
nh
(l)
n
fn
eωlt, (2.1)
where j = 1, . . . ,m, ωl = s(al − āl), |al| = 1 with āl representing the complex conjugate of al,
l = 1, . . . ,M −m. Here, fn is a real-valued function, whereas, gn and hn are complex-valued
functions. The transformations convert equation (1.3) into a set of bilinear equations as follows
Dtg
(j)
n · fn = s
(
g
(j)
n+1fn−1 − g(j)
n−1fn+1
)
, j = 1, . . . ,m,
(Dt + ωl)h
(l)
n · fn = s
(
alh
(l)
n+1fn−1 − ālh
(l)
n−1fn+1
)
, l = 1, . . . ,M −m,
sfn+1fn−1 − f2
n =
m∑
j=1
σj
∣∣g(j)
n
∣∣2 +
M−m∑
l=1
σl+m|ρl|2
∣∣h(l)
n
∣∣2. (2.2)
Here s = 1 +
M−m∑
l=1
σl+m|ρl|2.
In what follows, we give a Pfaffian-type solution to the above bilinear equations.
Theorem 2.1. A set of bilinear equations (2.2) admit the following solutions in the form of
Pfaffians
fn = Pf(a1, . . . , a2N , b1, . . . , b2N ),
g(j)
n = Pf(d0, βj , a1, . . . , a2N , b1, . . . , b2N ), h(l)
n = Pf
(
c
(l)
1 , . . . , c
(l)
2N , b1, . . . , b2N
)
,
with the elements of the Pfaffians defined as follows
Pf(aj , ak)n =
pj − pk
pjpk − 1
ϕj(n)ϕk(n), Pf(d0, bj) = Pf(d0, βl) = 0,
Pf
(
c
(l)
j , c
(l)
k
)
n
=
pj − pk
pjpk − 1
pj − al
1− alpj
pk − al
1− alpk
ϕj(n)ϕk(n),
Pf(aj , bk) = δjk, Pf
(
c
(l)
j , bk
)
= δjk, Pf(dl, ak)n = plkϕk(n),
Pf(bj , βl) =
{
0, 1 ≤ j ≤ N,
α
(l)
j−N , N + 1 ≤ j ≤ 2N,
Pf(aj , βl) = 0,
Pf(bj , bk) =
{
bjk, 1 ≤ j ≤ N, N + 1 ≤ k ≤ 2N,
0, otherwise,
with
bjk =
m∑
l=1
α
(l)
j σlα
(l)
k−N
(pj − pk)(pjpk − 1)
(
s
pjpk
−
M−m∑
l=1
σl+m|ρl|2(al−āl)2
(1−alpj)(1−alpk)(1−ālpj)(1−ālpk)
) ,
and ϕj(n) = pnj e
ηj , ηj = s
(
pj − p−1
j
)
t +ηj,0 which satisfying pj+N = p̄j, ηj+N,0 = η̄j,0.
Proof. It can be shown that
d
dt
fn = sPf(d−1, d1, . . . )n, where Pf(d−1, d1) ≡ 0, Pf(d±1, bj) ≡ 0,
fn+1 = Pf(d0, d1, . . . )n, where Pf(d0, d1) ≡ 1,
4 B.-F. Feng and Y. Ohta
fn−1 = Pf(d0, d−1, . . . )n, where Pf(d0, d−1) ≡ 1,
and
d
dt
g(j)
n = sPf(d0, d−1, d1, βj , . . . )n,
g
(j)
n+1 = Pf(d1, βj , . . . )n, g
(j)
n−1 = Pf(d−1, βj , . . . )n,
where Pf(d0, d1, a1, . . . , a2N , b1, . . . , b2N ) is abbreviated by Pf(d0, d1, . . . ), so as other similar
Pfaffians. Thus, an algebraic identity of Pfaffian
Pf(d0, d−1, d1, βj , . . . )n Pf(. . . )n = Pf(d0, d−1, . . . )n Pf(d1, βj , . . . )n
− Pf(d0, d1, . . . )n Pf(d−1, βj , . . . )n + Pf(d0, βj , . . . )n Pf(d−1, d1, . . . )n,
together with above Pfaffian relations gives(
d
dt
g(j)
n
)
× fn = sg
(j)
n+1 × fn−1 − sg(j)
n−1 × fn+1 + g(j)
n ×
(
d
dt
fn
)
,
which is exactly the first bilinear equation. Next we prove the second bilinear equation. It can
also be shown that
h(l)
n = Pf
(
d0, d̄
(l)
0 , . . .
)
n
, h
(l)
n+1 = āl Pf
(
d1, d̄
(l)
0 , . . .
)
n
, h
(l)
n−1 = al Pf
(
d−1, d̄
(l)
0 , . . .
)
n
,(
d
dt
+ s(al − āl)
)
h(l)
n = sPf
(
d0, d−1, d1, d̄
(l)
0 , . . .
)
n
,
where
Pf
(
d̄
(l)
0 , aj
)
= pnj
(
pj − al
1− alpj
)
eηj , Pf
(
d̄
(l)
0 , bj
)
= 0, Pf
(
d0, d̄
(l)
0
)
= 1,
Pf
(
d−1,d̄
(l)
0
)
= āl, Pf
(
d1, d̄
(l)
0
)
= al.
Therefore, an algebraic identity of Pfaffian
Pf
(
d0, d−1, d1, d̄
(l)
0 , . . .
)
n
Pf(. . . )n = Pf(d0, d−1, . . . )n Pf
(
d1, d̄
(l)
0 , . . .
)
n
− Pf(d0, d1, . . . )n Pf(d−1, d̄0, . . . )n + Pf
(
d0, d̄
(l)
0 , . . .
)
n
Pf(d−1, d1, . . . )n,
together with above Pfaffian relations gives(
d
dt
+ s(al − āl)
)
h(l)
n × fn = s
(
alh
(l)
n+1fn−1 − ālh
(l)
n−1fn+1
)
+ h(l)
n
(
d
dt
fn
)
,
which is nothing but the second bilinear equation. Now let us proceed to the proof of the third
bilinear equation. To this end, we need to define
Pf(aj , β̄l) = 0, Pf(bj , β̄l) =
{
0, 1 ≤ j ≤ N,
α
(l)
j−N , N + 1 ≤ j ≤ 2N,
Pf
(
d0, d′0
(l))
= 1, Pf
(
c̄
(l)
j , c̄
(l)
k
)
n
=
pj − pk
pjpk − 1
1− alpj
pj − al
1− alpk
pk − al
ϕj(n)ϕk(n),
Pf
(
d′0
(l)
, aj
)
= pnj
(
1− alpj
pj − al
)
eηj , Pf
(
c̄
(l)
j , bk
)
= δjk, Pf
(
d′0
(l)
, bj
)
= 0.
N -Bright-Dark Soliton Solution to a Vector SDNLS Equation 5
Then from the fact
Pf(aj , ak) = Pf(aj′ , ak′), Pf(bj , bk) = Pf(bj′ , bk′),
where j′ = j +N mod(2N), k′ = k +N mod(2N), we obtain
f̄n = fn, ḡ(j)
n = Pf(d0, β̄j , a1, . . . , a2N , b1, . . . , b2N )n,
h̄(l)
n = Pf
(
c̄
(l)
1 , . . . , c̄
(l)
2N , b1, . . . , b2N
)
= Pf
(
d0, d′0
(l)
, . . .
)
n
.
Since
fn+1 = Pf(d0, d1, . . . )n, fn−1 = Pf(d0, d−1, . . . )n,
we then have
fn+1 = fn +
2N∑
j=1
(−1)j−1 Pf(d1, aj) Pf(d0, . . . , âj , . . . )n,
fn−1 = fn +
2N∑
j=1
(−1)j−1 Pf(d−1, aj) Pf(d0, . . . , âj , . . . )n,
Then we can show
fn+1fn−1 − fnfn = −
∑
j<k
(−1)j+k
(
pj +
1
pj
− pk −
1
pk
)
Pf(bj,bk)
× Pf(d0, . . . , b̂j , . . . ) Pf(d0, . . . , b̂k, . . . ).
On the other hand, since
h(l)
n = Pf
(
d0, d0
(l)
, . . .
)
n
, h̄(l)
n = Pf
(
d0, d′0
(l)
, . . .
)
n
,
we have
h(l)
n = fn +
2N∑
j=1
(−1)j−1 Pf(d0, aj)n
(
pj − al
1− alpj
)
Pf(d0, . . . , âj , . . . )n,
h̄(l)
n = fn +
2N∑
j=1
(−1)j−1 Pf(d0, aj)n
(
1− alpj
pj − al
)
Pf(d0, . . . , âj , . . . )n.
Similarly, we can show∣∣h(l)
n
∣∣2 − fnfn = −
∑
j<k
(−1)j+k
(
pj − al
1− alpj
+
1− alpj
pj − al
− pk − al
1− alpk
− 1− alpk
pk − al
)
× Pf(bj,bk) Pf(d0, . . . , b̂j , . . . ) Pf(d0, . . . , b̂k, . . . ).
Finally, we have
s(fn+1fn−1 − fnfn)−
M−m∑
l=1
σl+m|ρl|2
(
|h(l)
n |2 − fnfn
)
= −
∑
j<k
(−1)j+k
{
s
(
pj +
1
pj
− pk −
1
pk
)
6 B.-F. Feng and Y. Ohta
−
M−m∑
l=1
σl+m|ρl|2
(
pj − al
1− alpj
+
1− alpj
pj − al
− pk − al
1− alpk
− 1− alpk
pk − al
)}
× Pf(bj,bk) Pf(d0, . . . , b̂j , . . . ) Pf(d0, . . . , b̂k, . . . )
=
N∑
j=1
2N∑
k=N+1
(−1)j+k
m∑
l=1
α
(l)
j σlα
(l)
k−N Pf(d0, . . . , b̂j , . . . ) Pf(d0, . . . , b̂k, . . . )
=
m∑
l=1
σl
N∑
j=1
2N∑
k=N+1
(−1)j+k Pf(bj , βl) Pf(bk, β̄l) Pf(d0, . . . , b̂j , . . . ) Pf(d0, . . . , b̂k, . . . )
=
m∑
l=1
σl|g(l)
n |2.
The third bilinear equation is proved. �
The above Pfaffian solutions, with dependent variable transformations (2.1), give general
N -bright-dark soliton solutions to the semi-discrete vector NLS equation (1.3).
3 One- and two-soliton solutions for the two-
and three-coupled discrete NLS equation
3.1 Two-component semi-discrete NLS equation
In this subsection, we provide and illustrate one- and two-soliton for two-component semi-
discrete NLS equation (1.2) explicitly.
One-soliton solution. the tau-functions for one-soliton solution (N = 1) are
fn = −1− c11̄(p1p̄1)neη1+η̄1 ,
g(1)
n = −α(1)
1 p1
neη1 , h(1)
n = −1− d(1)
11̄
(p1p̄1)neη1+η̄1 ,
where
c11̄ =
ᾱ
(1)
1 σ1α
(1)
1
(p1p̄1 − 1)2
(
s
|p1|2 + σ2|ρ1|2(a1−ā1)2
|1−a1p1|2|1−ā1p1|2
) , d
(1)
11̄
= − (p1 − a1)(p̄1 − a1)
(1− a1p1)(1− a1p̄1)
c11̄.
The above tau functions lead to the one-soliton solution as follows
q(1)
n =
α
(1)
1
2
√
c11̄
eiξ1I sech(ξ1R + θ0),
q(2)
n =
1
2
ρ1e
iζ1
(
1 + e2iφ1 + (e2iφ1 − 1) tanh(ξ1R + θ0)
)
,
where ξ1 = ξ1R + iξ1I = n ln(ip1) + s
(
p1 − p−1
1
)
t, ζ1 = nϕ1 + nπ/2 + ω1t, e
iϕ1 = a1, e2θ0 = c11̄,
e2iφ1 = −(p1 − a1)(p̄1 − a1)/((1 − a1p1)(1 − a1p̄1)). Therefore, the amplitude of bright soliton
for q(1) are 1
2
∣∣α(1)
1
∣∣/√a11̄. The dark soliton q(2) approaches |ρ1| as x → ±∞. In addition, the
intensity of the dark soliton is |ρ1| cosφ1.
An example of one-bright-dark soliton is illustrated in Fig. 1a p1 = 1.0 + 0.8i, ρ1 = 5.0,
α
(1)
1 = 1.0 + i, a1 = 0.8 + 0.6i. for focusing-focusing case (σ1 = 1.0, σ2 = 1.0). Fig. 1b shows
the bright-dark soliton for the focusing-defocusing case (σ1 = 1.0, σ2 = −1.0). It is interesting
to note the dark soliton corresponding to defocusing component becomes an anti-dark one.
N -Bright-Dark Soliton Solution to a Vector SDNLS Equation 7
−50 0 50
0
2
4
6
8
10
n
|q(1)
n
|
|q(2)
n
|
−50 0 50
0
5
10
15
n
|q(1)
n
|
|q(2)
n
|
Figure 1. One-bright-dark soliton soliton solution to a two-coupled semi-discrete NLS equation:
(a) focusing-focusing case (σ1 = 1.0, σ2 = 1.0); (b) focusing-defocusing case (σ1 = 1.0, σ2 = −1.0).
−500 0 500
0
1
2
3
4
n
|q(1)
n
|
|q(2)
n
|
−500 0 500
0
1
2
3
4
n
|q(1)
n
|
|q(2)
n
|
Figure 2. A two-soliton solution of mixed type for a two-coupled semi-discrete NLS equation: (a) before
the collision t = −80; (b) after the collision t = 80.
Two-soliton solution. The tau functions for two-soliton are of the following form
fn = 1 + c11̄E1Ē1 + c21̄E2Ē1 + c12̄E1Ē2 + c22̄E2Ē2 + c121̄2̄E1E2Ē1Ē2,
gn = α
(1)
1 E1 + α
(1)
2 E2 + c
(j)
121̄
E1E2Ē1 + c
(j)
122̄
E1E2Ē2,
hn = 1 + d
(1)
11̄
E1Ē1 + d
(1)
21̄
E2Ē1 + d
(1)
12̄
E1Ē2 + d
(1)
22̄
E2Ē2 + d
(1)
121̄2̄
E1E2Ē1Ē2,
where Ej = pj
neηj ,
cij̄ =
ᾱ
(1)
i σ1α
(1)
j
(pip̄j − 1)2
(
s
pip̄j
+ σ2|ρ1|2(a1−ā1)2
|1−a1pi|2|1−ā1pj |2
) , d
(1)
ij̄
= − (pi − a1)(p̄j − a1)
(1− a1pi)(1− a1p̄j)
cij̄ ,
c121̄2̄ = |p2 − p1|2
(
c11̄c22̄
(p1 + p̄2) (p2 + p̄1)
− c12̄c21̄
(p1 + p̄1)(p2 + p̄2)
)
,
c12j̄ = (p2 − p1)
(
α
(1)
2 c1j̄
p2 + p̄j
−
α
(1)
1 c2j̄
p1 + p̄j
)
,
d121̄2̄ =
(p1 − a1)(p̄1 − a1)(p2 − a2)(p̄1 − a2)
(1− a1p1)(1− a1p̄1)(1− a1p2)(1− a1p̄2)
c121̄2̄.
A two bright-dark soliton solution is shown in Fig. 2 before and after the collision for parameters
σ1 = 1.0, σ2 = −1, p1 = 1.0 + 0.5i, ρ = 2.0, α
(1)
1 = 1.0 + 0.8i, α
(1)
2 = 1.0 + 0.5i, a1 = 0.6 + 0.8i. It
can be seen that the collision is elastic which is the same as for the continuous two-component
NLS equation.
8 B.-F. Feng and Y. Ohta
3.2 Bright-dark soliton solution for three-component
semi-discrete NLS equation
In this subsection, we will give the mixed-type soliton solution to the following three-component
semi-discrete NLS equation
iq
(1)
n,t =
(
1 +
3∑
k=1
σk
∣∣q(k)
n
∣∣2)(q(1)
n+1 + q
(1)
n−1
)
,
iq
(2)
n,t =
(
1 +
3∑
k=1
σk
∣∣q(k)
n
∣∣2)(q(2)
n+1 + q
(2)
n−1
)
,
iq
(3)
n,t =
(
1 +
3∑
k=1
σk
∣∣q(k)
n
∣∣2)(q(3)
n+1 + q
(3)
n−1
)
.
Two-bright-one-dark soliton solution. The tau-functions for one-soliton solution
(N = 1) are
fn = −1− c11̄(p1p̄1)neη1+η̄1 , g(j)
n = −α(j)
1 p1
neη1 , h(1)
n = −1− d(1)
11̄
(p1p̄1)neη1+η̄1 ,
where
c11̄ =
2∑
k=1
ᾱ
(k)
1 σkα
(k)
1
(p1p̄1 − 1)2
(
s
|p1|2 + σ3|ρ1|2(a1−ā1)2
|1−a1p1|2|1−ā1p1|2
) , d
(1)
11̄
= − (p1 − a1)(p̄1 − a1)
(1− a1p1)(1− a1p̄1)
c11̄,
where ω = s(a1− ā1), |a1| = 1, s = 1+σ3|ρ1|2 with ā1 representing the complex conjugate of a1.
The above tau functions lead to the one-soliton as follows
q(j)
n =
α
(j)
1
2
√
c11̄
eiξ1I sech(ξ1R + θ0), j = 1, 2
q(3)
n =
1
2
ρ1e
iζ1
(
1 + e2iφ1 + (e2iφ1 − 1) tanh(ξ1R + θ0)
)
,
where ξ1 = ξ1R + iξ1I = n ln(ip1) + s
(
p1 − p−1
1
)
t, ζ1 = nϕ1 + nπ/2 + ω1t, e
iϕ1 = a1, e2θ0 = c11̄,
e2iφ1 = −(p1 − a1)(p̄1 − a1)/((1 − a1p1)(1 − a1p̄1)). Therefore, the amplitude of bright soliton
for q(j) are 1
2
∣∣α(j)
1
∣∣/√a11̄. The dark soliton q(3) approaches |ρ1| as x → ±∞. In addition, the
intensity of the dark soliton is |ρ1| cosφ1.
The tau functions for two-soliton are of the following form
fn = 1 + c11̄E1Ē1 + c21̄E2Ē1 + c12̄E1Ē2 + c22̄E2Ē2 + c121̄2̄E1E2Ē1Ē2,
g(j)
n = α
(j)
1 E1 + α
(j)
2 E2 + c
(j)
121̄
E1E2Ē1 + c
(j)
122̄
E1E2Ē2, j = 1, 2,
h(1)
n = 1 + d
(1)
11̄
E1Ē1 + d
(1)
21̄
E2Ē1 + d
(1)
12̄
E1Ē2 + d
(1)
22̄
E2Ē2 + d
(1)
121̄2̄
E1E2Ē1Ē2,
where
cij̄ =
2∑
k=1
ᾱ
(k)
i σkα
(k)
j
(pip̄j − 1)2
(
s
pip̄j
+ σ3|ρ1|2(a1−ā1)2
|1−a1pi|2|1−ā1pj |2
) , d
(1)
ij̄
= − (pi − a1)(p̄j − a1)
(1− a1pi)(1− a1p̄j)
cij̄ ,
c121̄2̄ = |p2 − p1|2
(
c11̄c22̄
(p1 + p̄2)(p2 + p̄1)
− c12̄c21̄
(p1 + p̄1)(p2 + p̄2)
)
,
N -Bright-Dark Soliton Solution to a Vector SDNLS Equation 9
c12j̄ = (p2 − p1)
(
α
(1)
2 c1j̄
p2 + p̄j
−
α
(1)
1 c2j̄
p1 + p̄j
)
,
d
(1)
121̄2̄
=
(p1 − a1)(p̄1 − a1)(p2 − a2)(p̄1 − a2)
(1− a1p1)(1− a1p̄1)(1− a1p2)(1− a1p̄2)
c121̄2̄.
It is found that two-bright-one-dark soliton solution given above is nonsingular for any other
combinations of nonlinearities if the following quantity(
2∑
k=1
ᾱ
(k)
i σkα
(k)
j
)(
s
|pi|2
+
σ3|ρ1|2(a1 − ā1)2
|1− a1pi|2|1− ā1pi|2
)
is positive.
One-bright–two-dark soliton solution. The tau-functions for one-soliton solution
(N = 1) are
fn = −1− c11̄(p1p̄1)neη1+η̄1 , g(1)
n = −α(1)
1 p1
neη1 , h(l)
n = −1− d(l)
11̄
(p1p̄1)neη1+η̄1 ,
where
c11̄ =
ᾱ
(1)
1 σ1α
(1)
1
(p1p̄1 − 1)2
s
|p1|2 +
2∑
l=1
σl+1|ρl|2(al−āl)2
|1−a1p1|2|1−ā1p1|2
.
Here ωl = s(al − āl), |al| = 1, s = 1 + σ2|ρ1|2 + σ3|ρ2|2, āl represents the complex conjugate
of al. The above tau functions lead to the one-soliton as follows
q(1)
n =
α
(1)
1
2
√
c11̄e
iξ1I sech(ξ1R + θ0),
q(l+1)
n =
1
2
ρle
iζl
(
1 + e2iφl + (e2iφl − 1) tanh(ξ1R + θ0)
)
, l = 1, 2,
where ξ1 = ξ1R + iξ1I = n ln(ip1) + s
(
p1 − p−1
1
)
t, ζl = nϕl + nπ/2 + ωlt, e
iϕl = al, e
2θ0 = c11̄,
e2iφl = −(p1 − al)(p̄1 − al)/((1 − alp1)(1 − alp̄1)). Therefore, the amplitude of bright soliton
for q(1) are 1
2
∣∣α(1)
1
∣∣/√a11̄. The dark soliton q(l+1) approaches |ρl| as x → ±∞. In addition, the
intensity of the dark soliton is |ρl| cosφl.
The tau functions for two-soliton are of the following form
fn = 1 + c11̄E1Ē1 + c21̄E2Ē1 + c12̄E1Ē2 + c22̄E2Ē2 + c121̄2̄E1E2Ē1Ē2,
g(1)
n = α
(1)
1 E1 + α
(1)
2 E2 + c
(1)
121̄
E1E2Ē1 + c
(1)
122̄
E1E2Ē2,
h(l)
n = 1 + d
(l)
11̄
E1Ē1 + d
(l)
21̄
E2Ē1 + d
(l)
12̄
E1Ē2 + d
(l)
22̄
E2Ē2 + d
(l)
121̄2̄
E1E2Ē1Ē2, l = 1, 2,
where
cij̄ =
ᾱ
(1)
i σ1α
(1)
j
(pip̄j − 1)2
s
pip̄j
+
2∑
l=1
σl+1|ρl|2(al−āl)2
|1−alpi|2|1−ālpj |2
, d
(l)
ij̄
= − (pi − al)(p̄j − al)
(1− alpi)(1− alp̄j)
cij̄ ,
c121̄2̄ = |p2 − p1|2
(
c11̄c22̄
(p1 + p̄2)(p2 + p̄1)
− c12̄c21̄
(p1 + p̄1)(p2 + p̄2)
)
,
10 B.-F. Feng and Y. Ohta
c12j̄ = (p2 − p1)
(
α
(1)
2 c1j̄
p2 + p̄j
−
α
(1)
1 c2j̄
p1 + p̄j
)
,
d
(l)
121̄2̄
=
(p1 − al)(p̄1 − al)(p2 − al)(p̄1 − al)
(1− alp1)(1− alp̄1)(1− alp2)(1− alp̄2)
c121̄2̄.
For all possible combinations of mixed type in three-coupled NLS equation, one-bright-two-
dark soliton solution exists if the following quantity
(
ᾱ
(1)
i σ1α
(1)
i
)
s
|pi|2
+
2∑
l=1
σl+1|ρl|2(al − āl)2
|1− alpi|2|1− ālpi|2
is positive.
The asymptotic analysis for two-soliton solution is performed in Appendix A. It should be
pointed out that two-soliton for one-bright-two-dark soliton case always undertakes elastic col-
lision without shape changing.
4 Discussion and conclusion
We conclude the present paper by two comments. First, we comment on a connection of the
vector semi-discrete NLS equation to the vector modified Volterra lattice equation studied in [7].
To this end, we consider the two-component semi-discrete NLS equation of focusing type
i
d
dt
un =
(
1 + |un|2 + |vn|2
)
(un+1 + un−1),
i
d
dt
vn =
(
1 + |un|2 + |vn|2
)
(vn+1 + vn−1). (4.1)
Let un = xn + iyn and vn = zn + iwn, then equation (4.1) becomes
d
dt
xn =
(
1 + x2
n + y2
n + z2
n + w2
n
)
(yn+1 + yn−1),
− d
dt
yn =
(
1 + x2
n + y2
n + z2
n + w2
n
)
(xn+1 + xn−1),
d
dt
zn =
(
1 + x2
n + y2
n + z2
n + w2
n
)
(wn+1 + wn−1),
− d
dt
wn =
(
1 + x2
n + y2
n + z2
n + w2
n
)
(zn+1 + zn−1).
By defining
U (1)
n =
{
xn, for n even,
yn, for n odd,
U (2)
n =
{
−yn, for n even,
xn, for n odd,
U (3)
n =
{
zn, for n even,
wn, for n odd,
U (4)
n =
{
−wn, for n even,
zn, for n odd,
U (5)
n =
{
(−1)n/2, for n even,
(−1)(n−1)/2, for n odd,
we obtain
d
dt
U (1)
n =
((
U (1)
n
)2
+
(
U (2)
n
)2
+
(
U (3)
n
)2
+
(
U (4)
n
)2
+
(
U (5)
n
)2)(
U
(1)
n+1 + U
(1)
n−1
)
,
N -Bright-Dark Soliton Solution to a Vector SDNLS Equation 11
d
dt
U (2)
n =
((
U (1)
n
)2
+
(
U (2)
n
)2
+
(
U (3)
n
)2
+
(
U (4)
n
)2
+
(
U (5)
n
)2)(
U
(2)
n+1 + U
(2)
n−1
)
,
d
dt
U (3)
n =
((
U (1)
n
)2
+
(
U (2)
n
)2
+
(
U (3)
n
)2
+
(
U (4)
n
)2
+
(
U (5)
n
)2)(
U
(3)
n+1 + U
(3)
n−1
)
,
d
dt
U (4)
n =
((
U (1)
n
)2
+
(
U (2)
n
)2
+
(
U (3)
n
)2
+
(
U (4)
n
)2
+
(
U (5)
n
)2)(
U
(4)
n+1 + U
(4)
n−1
)
,
d
dt
U (5)
n =
((
U (1)
n
)2
+
(
U (2)
n
)2
+
(
U (3)
n
)2
+
(
U (4)
n
)2
+
(
U (5)
n
)2)(
U
(5)
n+1 + U
(5)
n−1
)
for n being even, and
d
dt
U (1)
n = −
((
U (1)
n
)2
+
(
U (2)
n
)2
+
(
U (3)
n
)2
+
(
U (4)
n
)2
+
(
U (5)
n
)2)(
U
(1)
n+1 + U
(1)
n−1
)
,
d
dt
U (2)
n = −
((
U (1)
n
)2
+
(
U (2)
n
)2
+
(
U (3)
n
)2
+
(
U (4)
n
)2
+
(
U (5)
n
)2)(
U
(2)
n+1 + U
(2)
n−1
)
,
d
dt
U (3)
n = −
((
U (1)
n
)2
+
(
U (2)
n
)2
+
(
U (3)
n
)2
+
(
U (4)
n
)2
+
(
U (5)
n
)2)(
U
(3)
n+1 + U
(3)
n−1
)
,
d
dt
U (4)
n = −
((
U (1)
n
)2
+
(
U (2)
n
)2
+
(
U (3)
n
)2
+
(
U (4)
n
)2
+
(
U (5)
n
)2)(
U
(4)
n+1 + U
(4)
n−1
)
,
d
dt
U (5)
n = −
((
U (1)
n
)2
+
(
U (2)
n
)2
+
(
U (3)
n
)2
+
(
U (4)
n
)2
+
(
U (5)
n
)2)(
U
(5)
n+1 + U
(5)
n−1
)
for n being odd, in other words,
d
dt
U (j)
n = (−1)n
(
5∑
k=1
(
U (k)
n
)2)(
U
(j)
n+1 + U
(j)
n−1
)
for 1 ≤ j ≤ 5. By rewriting U
(j)
n = inV
(j)
n and t = x/i, we have
d
dx
V (j)
n =
(
5∑
k=1
(
V (k)
n
)2)(
V
(j)
n+1 − V
(j)
n−1
)
.
Consequently,
un =
{
U
(1)
n − iU
(2)
n , n even,
U
(2)
n + iU
(1)
n , n odd
=
{
in−1
(
V
(2)
n + iV
(1)
n
)
, n even,
in
(
V
(2)
n + iV
(1)
n
)
, n odd,
vn =
{
U
(3)
n − iU
(4)
n , n even,
U
(4)
n + iU
(3)
n , n odd
=
{
in−1
(
V
(4)
n + iV
(3)
n
)
, n even,
in
(
V
(4)
n + iV
(3)
n
)
, n odd.
un and u∗n correspond to U
(1)
n and U
(2)
n , and vn and v∗n correspond to U
(3)
n and U
(4)
n , with even-odd
parity depending gauge factor i(n or n− 1).
The correspondence between coupled defocusing-defocusing and focusing-defocusing coupled
Ablowitz–Ladik equation and the vector modified Volterra lattice equatino can be constructed
by similar variable transformations. In all cases, we need 5-components in the vector modified
Volterra lattice, one of which is a trivial wave V
(5)
n = i(0 or 1), in order to recover 2-component
coupled Ablowitz–Ladik equation. In principle any solutions of coupled Ablowitz–Ladik equation
can be derived from those of vector modified Volterra lattice and vice versa. However it is not
so easy to make exact matching.
Second, we give a comparison between the NLS-type equations and the sine/sinh-Gordon-
type equations since their belong to the simplest positive and negative flows of the AKNS
hierarchy, respectively. In a series papers by Barashenlov, Getmanov et al. [9, 10, 11, 12],
12 B.-F. Feng and Y. Ohta
a generic integrable relativistic system associated with the sl(2,C) was systematically investi-
gated, from which the massive Thirring model, the complex sine-Gordon equation in Euclidean
and Minkowski spaces etc. are produced by different reductions. Especially an O(1, 1) sine-
Gordon equation with the Lagrangian
L =
u1ξu1η − u2ξu2η
1−
(
u2
1 − u2
2
) +
(
u2
1 − u2
2 − 1
)
,
exhibits nontrivial interaction of solitons such as decay and fusion [10]. Here u1 and u2 are real
variables. In parallel to the O(1, 1) sine-Gordon equation, we can have a NLS equation of O(1, 1)
type, whose Lagrangian is
L = u1u2t − u1tu2 +
(
u2
1x − u2
2x
)
− σ
(
u2
1 − u2
2
)2
.
On the contrary, in parallel to the U(1, 1) coupled NLS system, e.g., system (1.1) with σ = 1
and σ = −1, whose Lagrangian can be written by
L =
i
2
(
utu
∗ − u∗ut − vtv∗ + v∗vt
)
+
(
|u|2x − |v|2x
)
− σ
(
|u|2 − |v|2
)2
,
where u and v are complex variable and ∗ represents complex conjugate, we could propose
a U(1, 1) coupled complex sine-Gordon system with Lagrangian
L =
uηu
∗
ξ − vηv∗ξ
1−
(
|u|2 − |v|2
) − (|u|2 − |v|2).
Then several natural questions arise: does the NLS equation of O(1, 1) type exhibit nontrivial
interaction of solitons such as decay and fusion? Are there any nontrivial interaction of solitons
for the U(1, 1) coupled NLS system and the U(1, 1) complex sine-Gordon system? Unfortunately,
the answers to these questions are not clear at this moment. We expect above questions could
be answered by the authors or others in the near future.
A Appendix
By taking N = 1 we get the tau functions for one-soliton solution,
fn = Pf(a1, a2, b1, b2) = −1− c11̄E1Ē1,
g(j)
n = Pf(d0, βj , a1, a2, b1, b2) = −α(1)
1 E1, j = 1, . . . ,m,
h(l)
n = Pf
(
c
(l)
1 , c
(l)
2 , b1, b2
)
= −1− d(l)
11̄
E1Ē1, l = 1, . . . ,M −m,
where
c11̄ =
m∑
k=1
ᾱ
(k)
1 σkα
(k)
1
(p1p̄1 − 1)2
(
s
|p1|2 +
M−m∑
l=1
|ρl|2(al−āl)2
|1−alp1|2|1−ālp1|2
) , d
(l)
11̄
= − (p1 − al)(p̄1 − al)
(1− alp1)(1− alp̄1)
c11̄.
Based on the N -soliton solution of the vector discrete NLS equation, the tau-functions for
two-soliton solution can be expanded for N = 2
f = Pf(a1, a2, a3, a4, b1, b2, b3, b4)
= 1 + c11̄E1Ē1 + c21̄E2Ē1 + c12̄E1Ē2 + c22̄E2Ē2 + c121̄2̄E1E2Ē1Ē2,
N -Bright-Dark Soliton Solution to a Vector SDNLS Equation 13
g(j)
n = Pf(d0, βj , a1, a2, a3, a4, b1, b2, b3, b4)
= α
(j)
1 E1 + α
(j)
2 E2 + c
(j)
121̄
E1E2Ē1 + c
(j)
122̄
E1E2Ē2, j = 1, . . . ,m,
h(l)
n = Pf
(
c
(l)
1 , c
(l)
2 , c
(l)
3 , c
(l)
4 , b1, b2, b3, b4
)
= 1 + d
(l)
11̄
E1Ē1
+ d
(l)
21̄
E2Ē1 + d
(l)
12̄
E1Ē2 + d
(l)
22̄
E2Ē2 + d
(l)
121̄2̄
E1E2Ē1Ē2, l = 1, . . . ,M −m,
where
cij̄ =
m∑
k=1
ᾱ
(k)
j σkα
(k)
i
(pip̄j − 1)2
(
s
pip̄j
+
M−m∑
l=1
ρl|2(al−āl)2
|1−alpi|2|1−ālpj |2
) , d
(l)
ij̄
= − (pi − al)(p̄j − al)
(1− alpi)(1− alp̄j)
cij̄ ,
c121̄2̄ = |P12|2
(
P11̄P22̄c12̄c21̄ − P12̄P21̄c11̄c22̄
)
, c
(k)
12j̄
= P12
(
α
(k)
1 P11̄c2j̄ − α
(k)
2 P21̄c1j̄
)
,
d
(l)
121̄2̄
=
(p1 − al)(p̄1 − al)(p2 − al)(p̄1 − al)
(1− alp1)(1− alp̄1)(1− alp2)(1− alp̄2)
c121̄2̄,
Pij =
pi − pj
pipj − 1
, Pij̄ =
pi − p̄j
pip̄j − 1
.
Next, we investigate the asymptotic behavior of two-soliton solution. To this end, we assume
(Re ln(ip2)) > Re(ln(ip1)) > 0, sRe(p2−p−1
2 )/Re(ln(ip2)) > sRe(p1−p−1
1 )/Re(ln(ip1)) without
loss of generality. For the above choice of parameters, we have (i) η1R ≈ 0, η2R → ∓∞ as
t → ∓∞ for soliton 1 and (ii) η2R ≈ 0, η1R → ±∞ as t → ∓∞ for soliton 2. This leads to the
following asymptotic forms for two-soliton solution.
(i) Before collision (t→ −∞). Soliton 1 (η1R ≈ 0, η2R → −∞):
q(j)
n → α
(j)
1
inE1
1 + c11̄E1Ē1
→ A1−
j eiξ1I sech
(
ξ1R + ξ1−
0
)
,
q(l+m)
n →
1 + d
(l)
11̄
E1Ē1
1 + c11̄E1Ē1
ρl(ial)
neωlt
→ 1
2
ρle
iζl
(
1 + e2iφ
(1)
l +
(
e2iφ
(1)
l − 1
)
tanh
(
ξ1R + ξ1−
0
))
,
where
A1−
j =
α
(j)
1
2
√
c11̄
, e2ξ1−0 = c11̄,
e2iφ
(1)
l = − (p1 − al)(p̄1 − al)
(1− alp1)(1− alp̄1)
, ζl = nϕl + nπ/2 + ωlt,
ξ1 = ξ1R + iξ1I = n ln(ip1) + s
(
p1 − p−1
1
)
t, eiϕl = al.
Soliton 2 (η2R ≈ 0, η1R →∞):
q(j)
n →
inc
(j)
121̄
E2
c11̄ + c121̄2̄E2Ē2
→ A2−
j eiξ2I sech
(
ξ2R + ξ2−
0
)
,
q(l+m)
n →
d
(l)
11̄
+ d
(l)
121̄2̄
E2Ē2
c11̄ + c121̄2̄E2Ē2
ρl(ial)
neωlt
→ 1
2
ρle
i
(
ζl+2φ
(1)
l
)(
1 + e2iφ
(2)
l +
(
e2iφ
(2)
l − 1
)
tanh
(
ξ2R + ξ2−
0
))
,
14 B.-F. Feng and Y. Ohta
where
A2−
j =
c
(j)
121̄
2
√
c11̄
√
c121̄2̄
, e2ξ2−0 =
c121̄2̄
c11̄
,
e2iφ
(2)
l = − (p2 − al)(p̄2 − al)
(1− alp2)(1− alp̄2)
, ζ2−
0 = nϕl + nπ/2 + ωlt,
ξ2 = ξ2R + iξ2I = n ln(ip2) + s
(
p2 − p−1
2
)
t.
(ii) After the collision (t→∞). Soliton 1 (η1R ≈ 0, η2R → +∞):
q(j)
n →
c
(j)
122̄
inE1
c22̄ + c121̄2̄E1Ē1
→ A1+
j eiξ1I sech
(
ξ1R + ξ1+
0
)
,
q(l+m)
n →
d
(l)
22̄
+ d
(l)
121̄2̄
E1Ē1
c22̄ + c121̄2̄E1Ē1
ρl(ial)
neωlt
→ 1
2
ρle
i
(
ζl+2iφ
(2)
l
)(
1 + e2iφ
(1)
l +
(
e2iφ
(1)
l − 1
)
tanh
(
ξ1R + ξ1+
0
))
,
where
A1+
j =
c
(j)
122̄
2
√
c11̄
√
c121̄2̄
, e2ξ1+0 =
c121̄2̄
c22̄
,
e2iφ
(2)
l = − (p2 − al)(p̄2 − al)
(1− alp2)(1− alp̄2)
, ζl = nϕl + nπ/2 + 2φ
(2)
l + ωlt,
Soliton 2 (η2R ≈ 0, η1R → −∞):
q(j)
n →
α
(j)
2 inE2
1 + c22̄E2Ē2
→ A2+
j eiξ2I sech
(
ξ2R + ξ2+
0
)
,
q(l+m)
n →
1 + d
(l)
22̄
E2Ē2
1 + c22̄E2Ē2
ρl(ial)
neωlt → 1
2
ρle
iζl
(
1 + e2iφ
(2)
l +
(
e2iφ
(2)
l − 1
)
tanh
(
ξ2R + ξ2+
0
))
,
where
A2+
j =
α
(j)
2
2
√
c22̄
, e2ξ2+0 = c22̄.
Acknowledgements
We greatly appreciate all referees’ useful comments which help us improve the present paper
significantly. The work of B.F. is partially supported by NSF Grant (No. 1715991) and the COS
Research Enhancement Seed Grants Program at UTRGV. The work of Y.O. is partly supported
by JSPS Grant-in-Aid for Scientific Research (B-24340029, S-24224001, C-15K04909) and for
Challenging Exploratory Research (26610029).
References
[1] Ablowitz M.J., Biondini G., Prinari B., Inverse scattering transform for the integrable discrete nonlinear
Schrödinger equation with nonvanishing boundary conditions, Inverse Problems 23 (2007), 1711–1758.
[2] Ablowitz M.J., Clarkson P.A., Solitons, nonlinear evolution equations and inverse scattering, London Mathe-
matical Society Lecture Note Series, Vol. 149, Cambridge University Press, Cambridge, 1991.
[3] Ablowitz M.J., Ladik J.F., Nonlinear differential-difference equations, J. Math. Phys. 16 (1975), 598–603.
https://doi.org/10.1088/0266-5611/23/4/021
https://doi.org/10.1017/CBO9780511623998
https://doi.org/10.1017/CBO9780511623998
https://doi.org/10.1063/1.522558
N -Bright-Dark Soliton Solution to a Vector SDNLS Equation 15
[4] Ablowitz M.J., Ladik J.F., Nonlinear differential-difference equations and Fourier analysis, J. Math. Phys.
17 (1976), 1011–1018.
[5] Ablowitz M.J., Ohta Y., Trubatch A.D., On discretizations of the vector nonlinear Schrödinger equation,
Phys. Lett. A 253 (1999), 287–304, solv-int/9810014.
[6] Ablowitz M.J., Prinari B., Trubatch A.D., Discrete and continuous nonlinear Schrödinger systems, London
Mathematical Society Lecture Note Series, Vol. 302, Cambridge University Press, Cambridge, 2004.
[7] Adler V.E., Postnikov V.V., On vector analogs of the modified Volterra lattice, J. Phys. A: Math. Gen. 41
(2008), 455203, 16 pages, arXiv:0808.0101.
[8] Agrawal G.P., Nonlinear fiber optics, 5th ed., Elsevier Inc., London, 2013.
[9] Barashenkov I.V., Getmanov B.S., Multisoliton solutions in the scheme for unified description of integrable
relativistic massive fields. Non-degenerate sl(2,C) case, Comm. Math. Phys. 112 (1987), 423–446.
[10] Barashenkov I.V., Getmanov B.S., Kovtun V.E., Integrable model with nontrivial interaction between sub-
and superluminal solitons, Phys. Lett. A 128 (1988), 182–186.
[11] Barashenkov I.V., Getmanov B.S., Kovtun V.E., The unified approach to integrable relativistic equations:
soliton solutions over nonvanishing backgrounds. I, J. Math. Phys. 34 (1993), 3039–3053.
[12] Barashenkov I.V., Getmanov B.S., The unified approach to integrable relativistic equations: soliton solutions
over nonvanishing backgrounds. II, J. Math. Phys. 34 (1993), 3054–3072.
[13] Benney D.J., Newell A.C., The propagation of nonlinear wave envelopes, Stud. Appl. Math. 46 (1967),
133–139.
[14] Dalfovo F., Giorgini S., Pitaevskii L.P., Stringari S., Theory of Bose–Einstein condensation in trapped gases,
Rev. Modern Phys. 71 (1999), 463–512, cond-mat/9806038.
[15] Doliwa A., Santini P.M., Integrable dynamics of a discrete curve and the Ablowitz–Ladik hierarchy, J. Math.
Phys. 36 (1995), 1259–1273, solv-int/9407005.
[16] Dubrovin B.A., Malanyuk T.M., Krichever I.M., Makhan’kov V.G., Exact solutions of the time-dependent
Schrödinger equation with self-consistent potentials, Sov. J. Part. Nucl. 19 (1988), 252–269.
[17] Feng B.-F., General N -soliton solution to a vector nonlinear Schrödinger equation, J. Phys. A: Math. Theor.
47 (2014), 355203, 22 pages.
[18] Hasegawa A., Kodama Y., Solitons in optical communications, Clarendon, Oxford, 1995.
[19] Hasegawa A., Tappert F., Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers.
I. Anomolous dispersion, Appl. Phys. Lett. 23 (1973), 142–144.
[20] Hasegawa A., Tappert F., Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers.
II. Normal dispersion, Appl. Phys. Lett. 23 (1973), 171–172.
[21] Hirota R., The direct method in soliton theory, Cambridge Tracts in Mathematics, Vol. 155, Cambridge
University Press, Cambridge, 2004.
[22] Kanna T., Lakshmanan M., Tchofo Dinda P., Akhmediev N., Soliton collisions with shape change by
intensity redistribution in mixed coupled nonlinear Schrödinger equations, Phys. Rev. E 73 (2006), 026604,
15 pages, nlin.SI/0511034.
[23] Kivshar Y.S., Agrawal G.P., Optical solitons: from fibers to photonic crystals, Academic Press, San Diego,
2003.
[24] Krökel D., Halas N.J., Giuliani G., Grischkowsky D., Dark-pulse propagation in optical fibers, Phys. Rev.
Lett. 60 (1988), 29–32.
[25] Makhan’kov V.G., Pashaev O.K., Nonlinear Schrödinger equation with noncompact isogroup, Theoret. and
Math. Phys. 121 (1982), 979–987.
[26] Manakov S.V., On the theory of two-dimensional stationary self-focusing of electromagnetic waves, Sov.
Phys. JETP 38 (1974), 248–253.
[27] Maruno K.-I., Ohta Y., Casorati determinant form of dark soliton solutions of the discrete nonlinear
Schrödinger equation, J. Phys. Soc. Japan 75 (2006), 054002, 10 pages, nlin.SI/0506052.
[28] Narita K., Soliton solution for discrete Hirota equation, J. Phys. Soc. Japan 59 (1990), 3528–3530.
[29] Ohta Y., Pfaffian solution for coupled discrete nonlinear Schrödinger equation, Chaos Solitons Fractals 11
(2000), 91–95.
https://doi.org/10.1063/1.523009
https://doi.org/10.1016/S0375-9601(99)00048-1
https://arxiv.org/abs/solv-int/9810014
https://doi.org/10.1088/1751-8113/41/45/455203
https://arxiv.org/abs/0808.0101
https://doi.org/10.1007/BF01218485
https://doi.org/10.1016/0375-9601(88)90906-1
https://doi.org/10.1063/1.530403
https://doi.org/10.1063/1.530062
https://doi.org/10.1002/sapm1967461133
https://doi.org/10.1103/RevModPhys.71.463
https://arxiv.org/abs/cond-mat/9806038
https://doi.org/10.1063/1.531119
https://doi.org/10.1063/1.531119
https://arxiv.org/abs/solv-int/9407005
https://doi.org/10.1088/1751-8113/47/35/355203
https://doi.org/10.1063/1.1654836
https://doi.org/10.1063/1.1654847
https://doi.org/10.1017/CBO9780511543043
https://doi.org/10.1103/PhysRevE.73.026604
https://arxiv.org/abs/nlin.SI/0511034
https://doi.org/10.1103/PhysRevLett.60.29
https://doi.org/10.1103/PhysRevLett.60.29
https://doi.org/10.1007/BF01014793
https://doi.org/10.1007/BF01014793
https://doi.org/10.1143/JPSJ.75.054002
https://arxiv.org/abs/nlin.SI/0506052
https://doi.org/10.1143/JPSJ.59.3528
https://doi.org/10.1016/S0960-0779(98)00272-0
16 B.-F. Feng and Y. Ohta
[30] Ohta Y., Special solutions of discrete integrable systems, in Discrete Integrable Systems, Lecture Notes in
Phys., Vol. 644, Editors B. Grammaticos, Y. Kosmann-Schwarzbach, T. Tamizhmani, Springer, Berlin, 2004,
57–83.
[31] Ohta Y., Discretization of coupled nonlinear Schrödinger equations, Stud. Appl. Math. 122 (2009), 427–447.
[32] Ohta Y., Hirota R., Tsujimoto S., Imai T., Casorati and discrete Gram type determinant representations of
solutions to the discrete KP hierarchy, J. Phys. Soc. Japan 62 (1993), 1872–1886.
[33] Ohta Y., Wang D.-S., Yang J., General N -dark-dark solitons in the coupled nonlinear Schrödinger equations,
Stud. Appl. Math. 127 (2011), 345–371, arXiv:1011.2522.
[34] Park Q.-H., Shin H.J., Systematic construction of multicomponent optical solitons, Phys. Rev. E 61 (2000),
3093–3106.
[35] Prinari B., Ablowitz M.J., Biondini G., Inverse scattering transform for the vector nonlinear Schrödinger
equation with nonvanishing boundary conditions, J. Math. Phys. 47 (2006), 063508, 33 pages.
[36] Prinari B., Vitale F., Inverse scattering transform for the focusing Ablowitz–Ladik system with nonzero
boundary conditions, Stud. Appl. Math. 137 (2016), 28–52.
[37] Radhakrishnan R., Lakshmanan M., Bright and dark soliton solutions to coupled nonlinear Schrödinger
equations, J. Phys. A: Math. Gen. 28 (1995), 2683–2692.
[38] Sheppard A.P., Kivshar Y.S., Polarized dark solitons in isotropic Kerr media, Phys. Rev. E 55 (1997),
4773–4782.
[39] Tsuchida T., Integrable discretization of coupled nonlinear Schrödinger equations, Rep. Math. Phys. 46
(2000), 269–278, nlin.SI/0002048.
[40] Tsuchida T., Ujino H., Wadati M., Integrable semi-discretization of the coupled nonlinear Schrödinger
equations, J. Phys. A: Math. Gen. 32 (1999), 2239–2262, solv-int/9903013.
[41] Tsujimoto S., Integrable discretization of the integrable systems, in Applied Integrable Systems, Editor
Y. Nakamura, Shokabo, Tokyo, 2000, 1–52.
[42] Tsuzuki T., Nonlinear waves in the Pitaevskii–Gross equation, J. Low Temp. Phys. 4 (1971), 441–457.
[43] van der Mee C., Inverse scattering transform for the discrete focusing nonlinear Schrödinger equation with
nonvanishing boundary conditions, J. Nonlinear Math. Phys. 22 (2015), 233–264.
[44] Vekslerchik V.E., Konotop V.V., Discrete nonlinear Schrödinger equation under nonvanishing boundary
conditions, Inverse Problems 8 (1992), 889–909.
[45] Vijayajayanthi M., Kanna T., Lakshmanan M., Bright-dark solitons and their collisions in mixed N -coupled
nonlinear Schrödinger equations, Phys. Rev. A 77 (2008), 013820, 18 pages, arXiv:0711.4424.
[46] Weiner A.M., Heritage J.P., Hawkins R.J., Thurston R.N., Kirschner E.M., Leaird D.E., Tomlinson W.J.,
Experimental observation of the fundamental dark soliton in optical fibers, Phys. Rev. Lett. 61 (1988),
2445–2448.
[47] Yajima N., Oikawa M., A class of exactly solvable nonlinear evolution equations, Progr. Theoret. Phys. 54
(1975), 1576–1577.
[48] Zakharov V.E., Collapse of Langumuir waves, Sov. Phys. JETP 35 (1972), 908–914.
[49] Zakharov V.E., Shabat A.B., Exact theory of two-dimensional self-focusing and one-dimensional self-
modulation of waves in nonlinear media, Sov. Phys. JETP 34 (1972), 62–69.
[50] Zakharov V.E., Shabat A.B., Interaction betweem solitons in a stable medium, Sov. Phys. JETP 37 (1973),
823–828.
[51] Zhang Y.J., Cheng Y., Solutions for the vector k-constrained KP hierarchy, J. Math. Phys. 35 (1994),
5869–5884.
https://doi.org/10.1007/978-3-540-40357-9_3
https://doi.org/10.1007/978-3-540-40357-9_3
https://doi.org/10.1111/j.1467-9590.2009.00443.x
https://doi.org/10.1143/JPSJ.62.1872
https://doi.org/10.1111/j.1467-9590.2011.00525.x
https://arxiv.org/abs/1011.2522
https://doi.org/10.1103/PhysRevE.61.3093
https://doi.org/10.1063/1.2209169
https://doi.org/10.1111/sapm.12103
https://doi.org/10.1088/0305-4470/28/9/025
https://doi.org/10.1103/PhysRevE.55.4773
https://doi.org/10.1016/S0034-4877(01)80032-X
https://arxiv.org/abs/nlin.SI/0002048
https://doi.org/10.1088/0305-4470/32/11/016
https://arxiv.org/abs/solv-int/9903013
https://doi.org/10.1007/BF00628744
https://doi.org/10.1080/14029251.2015.1023583
https://doi.org/10.1088/0266-5611/8/6/007
https://doi.org/10.1103/PhysRevA.77.013820
https://arxiv.org/abs/0711.4424
https://doi.org/10.1103/PhysRevLett.61.2445
https://doi.org/10.1143/PTP.54.1576
https://doi.org/10.1063/1.530716
1 Introduction
2 General bright-dark soliton solution to semi-discrete vector NLS equation
3 One- and two-soliton solutions for the two- and three-coupled discrete NLS equation
3.1 Two-component semi-discrete NLS equation
3.2 Bright-dark soliton solution for three-component semi-discrete NLS equation
4 Discussion and conclusion
A Appendix
References
|