Non-Homogeneous Hydrodynamic Systems and Quasi-Stäckel Hamiltonians
In this paper we present a novel construction of non-homogeneous hydrodynamic equations from what we call quasi-Stäckel systems, that is non-commutatively integrable systems constructed from appropriate maximally superintegrable Stäckel systems. We describe the relations between Poisson algebras gen...
Gespeichert in:
Datum: | 2017 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2017
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/148772 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Non-Homogeneous Hydrodynamic Systems and Quasi-Stäckel Hamiltonians / K. Marciniak, M. Błaszak // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 22 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148772 |
---|---|
record_format |
dspace |
fulltext |
|
spelling |
irk-123456789-1487722019-02-20T01:24:33Z Non-Homogeneous Hydrodynamic Systems and Quasi-Stäckel Hamiltonians Marciniak, K. Błaszak, M. In this paper we present a novel construction of non-homogeneous hydrodynamic equations from what we call quasi-Stäckel systems, that is non-commutatively integrable systems constructed from appropriate maximally superintegrable Stäckel systems. We describe the relations between Poisson algebras generated by quasi-Stäckel Hamiltonians and the corresponding Lie algebras of vector fields of non-homogeneous hydrodynamic systems. We also apply Stäckel transform to obtain new non-homogeneous equations of considered type. 2017 Article Non-Homogeneous Hydrodynamic Systems and Quasi-Stäckel Hamiltonians / K. Marciniak, M. Błaszak // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 22 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 70H06; 70H20; 35F50; 53B20 DOI:10.3842/SIGMA.2017.077 http://dspace.nbuv.gov.ua/handle/123456789/148772 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In this paper we present a novel construction of non-homogeneous hydrodynamic equations from what we call quasi-Stäckel systems, that is non-commutatively integrable systems constructed from appropriate maximally superintegrable Stäckel systems. We describe the relations between Poisson algebras generated by quasi-Stäckel Hamiltonians and the corresponding Lie algebras of vector fields of non-homogeneous hydrodynamic systems. We also apply Stäckel transform to obtain new non-homogeneous equations of considered type. |
format |
Article |
author |
Marciniak, K. Błaszak, M. |
spellingShingle |
Marciniak, K. Błaszak, M. Non-Homogeneous Hydrodynamic Systems and Quasi-Stäckel Hamiltonians Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Marciniak, K. Błaszak, M. |
author_sort |
Marciniak, K. |
title |
Non-Homogeneous Hydrodynamic Systems and Quasi-Stäckel Hamiltonians |
title_short |
Non-Homogeneous Hydrodynamic Systems and Quasi-Stäckel Hamiltonians |
title_full |
Non-Homogeneous Hydrodynamic Systems and Quasi-Stäckel Hamiltonians |
title_fullStr |
Non-Homogeneous Hydrodynamic Systems and Quasi-Stäckel Hamiltonians |
title_full_unstemmed |
Non-Homogeneous Hydrodynamic Systems and Quasi-Stäckel Hamiltonians |
title_sort |
non-homogeneous hydrodynamic systems and quasi-stäckel hamiltonians |
publisher |
Інститут математики НАН України |
publishDate |
2017 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148772 |
citation_txt |
Non-Homogeneous Hydrodynamic Systems and Quasi-Stäckel Hamiltonians / K. Marciniak, M. Błaszak // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 22 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT marciniakk nonhomogeneoushydrodynamicsystemsandquasistackelhamiltonians AT błaszakm nonhomogeneoushydrodynamicsystemsandquasistackelhamiltonians |
first_indexed |
2025-07-12T20:13:05Z |
last_indexed |
2025-07-12T20:13:05Z |
_version_ |
1837473397603303424 |