Derivations and Spectral Triples on Quantum Domains I: Quantum Disk
We study unbounded invariant and covariant derivations on the quantum disk. In particular we answer the question whether such derivations come from operators with compact parametrices and thus can be used to define spectral triples.
Saved in:
Date: | 2017 |
---|---|
Main Authors: | Klimek, S., McBride, M., Rathnayake, S., Sakai, K., Wang, H. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2017
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/148777 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Derivations and Spectral Triples on Quantum Domains I: Quantum Disk / S. Klimek, M. McBride, S. Rathnayake, K. Sakai, H. Wang // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 21 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
A Note on Dirac Operators on the Quantum Punctured Disk
by: Klimek, S., et al.
Published: (2010) -
The Quantum Pair of Pants
by: Klimek, S., et al.
Published: (2015) -
A Note on Gluing Dirac Type Operators on a Mirror Quantum Two-Sphere
by: Klimek, S., et al.
Published: (2014) -
Quantum Isometry Group for Spectral Triples with Real Structure
by: Goswami, D.
Published: (2010) -
Tunneling and magnetic properties of triple quantum dots
by: Kikoin, K.
Published: (2007)