Fast and accurate algorithm of 3D magnetic surfaces reconstruction in stellarators
An algorithm of calculation of approximating functions, which establish the one-to-one correspondence between the real coordinate mesh with arbitrary step and magnetic flux label in the whole plasma volume, was developed. It allows one to calculate flux label along the lines of sight of the applie...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2018
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148813 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Fast and accurate algorithm of 3D magnetic surfaces Reconstruction in stellarators / V. Filippov, D. Grekov, V. Olefir // Вопросы атомной науки и техники. — 2018. — № 6. — С. 27-30. — Бібліогр.: 2 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148813 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1488132019-02-19T01:28:09Z Fast and accurate algorithm of 3D magnetic surfaces reconstruction in stellarators Filippov, V. Grekov, D. Olefir, V. Магнитное удержание An algorithm of calculation of approximating functions, which establish the one-to-one correspondence between the real coordinate mesh with arbitrary step and magnetic flux label in the whole plasma volume, was developed. It allows one to calculate flux label along the lines of sight of the applied diagnostics and to define the probes locations and RF antenna position in relation to the last closed magnetic surface. Moreover, now it is possible to provide fast visualization of magnetic configuration during the experiment. Наведено швидкий та точний алгоритм обчислення функцій, що апроксимують магнітні поверхні торсатрона. Вони здійснюють взаємно однозначну відповідність між просторовими координатами в об’ємі плазми та позначкою магнітних поверхонь. За допомогою цих функцій можна обчислювати значення позначки магнітних поверхонь вздовж ліній зондування різних діагностик, визначати розташування зондів та положення ВЧ-антен відносно останньої замкнутої магнітної поверхні. Більш того, стає можливим забезпечити швидку візуалізацію магнітної конфігурації торсатрона під час проведення експерименту Представлен быстрый и точный алгоритм вычисления аппроксимирующих функций, которые устанавливают взаимно однозначное соответствие между пространственными координатами в объеме плазмы и меткой магнитных поверхностей. С помощью этих функций можно вычислять значение метки магнитных поверхностей вдоль линий зондирования различных диагностик, определять положение зондов и позицию ВЧ-антенн относительно крайней замкнутой магнитной поверхности. Более того, стало возможным обеспечить быструю визуализацию магнитной конфигурации торсатрона во время проведения эксперимента. 2018 Article Fast and accurate algorithm of 3D magnetic surfaces Reconstruction in stellarators / V. Filippov, D. Grekov, V. Olefir // Вопросы атомной науки и техники. — 2018. — № 6. — С. 27-30. — Бібліогр.: 2 назв. — англ. 1562-6016 PACS: 52.27.Ny http://dspace.nbuv.gov.ua/handle/123456789/148813 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Магнитное удержание Магнитное удержание |
spellingShingle |
Магнитное удержание Магнитное удержание Filippov, V. Grekov, D. Olefir, V. Fast and accurate algorithm of 3D magnetic surfaces reconstruction in stellarators Вопросы атомной науки и техники |
description |
An algorithm of calculation of approximating functions, which establish the one-to-one correspondence between
the real coordinate mesh with arbitrary step and magnetic flux label in the whole plasma volume, was developed. It
allows one to calculate flux label along the lines of sight of the applied diagnostics and to define the probes locations
and RF antenna position in relation to the last closed magnetic surface. Moreover, now it is possible to provide fast
visualization of magnetic configuration during the experiment. |
format |
Article |
author |
Filippov, V. Grekov, D. Olefir, V. |
author_facet |
Filippov, V. Grekov, D. Olefir, V. |
author_sort |
Filippov, V. |
title |
Fast and accurate algorithm of 3D magnetic surfaces reconstruction in stellarators |
title_short |
Fast and accurate algorithm of 3D magnetic surfaces reconstruction in stellarators |
title_full |
Fast and accurate algorithm of 3D magnetic surfaces reconstruction in stellarators |
title_fullStr |
Fast and accurate algorithm of 3D magnetic surfaces reconstruction in stellarators |
title_full_unstemmed |
Fast and accurate algorithm of 3D magnetic surfaces reconstruction in stellarators |
title_sort |
fast and accurate algorithm of 3d magnetic surfaces reconstruction in stellarators |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2018 |
topic_facet |
Магнитное удержание |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148813 |
citation_txt |
Fast and accurate algorithm of 3D magnetic surfaces Reconstruction in stellarators / V. Filippov, D. Grekov, V. Olefir // Вопросы атомной науки и техники. — 2018. — № 6. — С. 27-30. — Бібліогр.: 2 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT filippovv fastandaccuratealgorithmof3dmagneticsurfacesreconstructioninstellarators AT grekovd fastandaccuratealgorithmof3dmagneticsurfacesreconstructioninstellarators AT olefirv fastandaccuratealgorithmof3dmagneticsurfacesreconstructioninstellarators |
first_indexed |
2025-07-12T20:19:59Z |
last_indexed |
2025-07-12T20:19:59Z |
_version_ |
1837473841579819008 |
fulltext |
ISSN 1562-6016. ВАНТ. 2018. №6(118)
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2018, № 6. Series: Plasma Physics (118), p. 27-30. 27
FAST AND ACCURATE ALGORITHM OF 3D MAGNETIC SURFACES
RECONSTRUCTION IN STELLARATORS
V. Filippov1, D. Grekov1,2, V. Olefir2
1National Science Center “Kharkov Institute of Physics and Technology”,
Institute of Plasma Physics, Kharkiv, Ukraine;
2V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
E-mail: grekov@ipp.kharkov.ua
An algorithm of calculation of approximating functions, which establish the one-to-one correspondence between
the real coordinate mesh with arbitrary step and magnetic flux label in the whole plasma volume, was developed. It
allows one to calculate flux label along the lines of sight of the applied diagnostics and to define the probes locations
and RF antenna position in relation to the last closed magnetic surface. Moreover, now it is possible to provide fast
visualization of magnetic configuration during the experiment.
PACS: 52.27.Ny
INTRODUCTION
Calculation of the specific vacuum magnetic config-
uration of “Uragan-2M” torsatron using Nemov’s de-
composition of magnetic field potentials [1] takes few
minutes of PC processor time. Calculations with using
Biot – Savart law [2] take even more time. The results
of calculation of one configuration (60 toroidal cross-
sections) occupy about 250 Mb of memory storage. On-
line operation with such data arrays or calculation of
magnetic configuration during the experiment is hardly
possible. The principal objective of this work was to
develop the algorithm of calculation of approximating
functions, which establish the one-to-one correspond-
ence between the real coordinate r
mesh with arbitrary
step and magnetic flux label in the whole plasma
volume.
1. THE ALGORITHM DESCRIPTION
Three coordinate systems which can be easily con-
nected each other were used in this work. These coordi-
nate systems are presented in Fig. 1.
The first coordinate system is the cylindrical one
with the axis along the main axis of the torus ),,( ZR
for initial calculations of magnetic field lines (Poincare
plots).
The second coordinate system is the “quasicylindri-
cal” one ),,( z , which is connected with the magnetic
axis. It is necessary for intermediate calculations. Coor-
dinates and z are defined as
axisaxis ZZzRR , , (1)
here
axisR and
axisZ are coordinates of the magnetic axis.
Fig. 1. Coordinate systems: 1 – vacuum vessel;
2 – magnetic axis; 3 – last closed magnetic surface
(LCMS)
The third coordinate system ),,( r is quasitoroidal
one, which is also connected with the magnetic axis
zzr arctan,22 . (2)
As an input parameters, L = 34 magnetic surfaces con-
sisting of M = 400 poloidal points with N = 60 toroidal
cross-sections were calculated using method [1] and
used as example (Fig. 2). It should be noted that the
values of the set (L, M, N) may vary. Also, the magnetic
axis position in each of N cross-sections must be sup-
plied. The dependencies of axisR and axisZ on toroidal
angle are shown in Fig. 3. As can be clearly seen
from this figure, these dependencies are perfectly ap-
proximated by series of the form
sVR
S
saxis 4cos
0 , sWZ
S
saxis 4sin
1 . (3)
The least squares method (LSA) was used to approx-
imate Vs and Ws. As it turned out, the averaged approxi-
mation error was of the order of 10-9 сm at S = 7.
Fig. 2. Poincare plots in three toroidal cross-sections separated by 8
28 ISSN 1562-6016. ВАНТ. 2018. №6(118)
Fig. 3. Dependencies of axisR (solid line) and
axisZ (dashed line) on toroidal angle
Hereinafter, each toroidal cross-section is indexed by
n (1 < n < N). Each magnetic surface is indexed by
l (1 < l < L). And each point at magnetic surface is in-
dexed by m’ (1 < m’ < M). All subsequent actions relate
to each magnetic surface and each toroidal cross-
section.
Unfortunately, input data nmlR ,, and nmlZ ,, are dis-
tributed over magnetic surface irregularly in angle .
This makes the accurate approximation of magnetic
configuration impossible. In order to overcome this ob-
stacle, it is necessary to rearrange input data. First, set
nmlR ,, and nmlZ ,, was transformed into set nml ,, and
nmlz ,, . As it is seen from Fig. 4, nml ,, and nmlz ,,
depend on m almost periodically. This motivated the
expansion of nml ,, and nmlz ,, into trigonometric se-
ries over m. To this purpose, dependencies of nl , on φ
were established (Fig. 5) and coefficients of linear re-
gressions nl , were defined.
Fig. 4. Dependencies of 17,,15 m (solid line)
and 17,,15 mz (dashed line) on m
Finally, the values nl , were averaged over the toroidal
angle N
N
nll 1 , . These allowed to expand
nml ,, and nmlz ,, into series
K
k
l
k
nl
K
k
l
k
nlnl kmbkmam
1
,
0
,, sincos ,
K
k
l
k
nl
K
k
l
k
nlnl kmdkmcmz
1
,
0
,, sincos . (4)
Fig. 5. Dependence of poloidal angle 17,15 on toroidal
angle φ
The value K = 11 was used to find coefficients by
LSA. The error of LSA in this case was under 10-2 cm.
Then these series were used in order to recalculate sets
nml ,, and nmlz ,, at values m , which are separated by
constant step M 2 . Values of lm , corre-
sponding to these m , were calculated from Eqs. (2),
(4) iteratively with relative error ~ 10-3. New M = 128
was adopted and new poloidal index m = 1.2…128 K
(Fig. 6).
Fig. 6. New set of input data in toroidal cross-section
n = 15
After that set nmlr ,, was calculated using new nml ,,
and nmlz ,, . An averaged radius was calculated as
NMrr
N
n
M
m
nmll
1 1
,, and flux surface label l was
defined as Lll rr . Such definition provide 0
at the magnetic axis and 1 at the LCMS.
Fig. 7. Dependence of 50,15 on r
ISSN 1562-6016. ВАНТ. 2018. №6(118) 29
Thus, on the rays, which started from magnetic axis in
toroidal cross-section n in poloidal direction m , the
one-to-one correspondence established between nmr ,
and nm, : nmnm rr ,, and cnmnm ar,, ,
where ca is the vessel radius (see Fig. 7). This corre-
spondence was approximated like
I
i
i
c
i
nmcnm arfar
1
,,
and
I
i
ii
nmcnm Far
1
,, .
Fig. 8. Coefficients of polynomial decomposition of ψ vs
poloidal angle for n = 15(f 1 – solid; f 2 – dashed;
f 3 – dot and dashed lines)
As the calculations showed, I = 3 is sufficient for these
representations (Fig. 8).
Then, coefficients i
nmf , (see Fig. 8) and i
nmF ,
were expanded into series over :
jgjgf
J
j
ji
n
J
j
ji
n
i
nm sin~cos
1
,
0
,
,
,
jGjGF
J
j
ji
n
J
j
ji
n
i
nm sin
~
cos
1
,
0
,
,
. (5)
At last, expansions over φ were fulfilled:
K
k
k
kji
H
ji
G
K
k
k
kji
H
ji
G
K
k
k
kji
h
ji
g
K
k
k
kji
h
ji
g
1
4sin
,,~
)(
,~
0
4cos
,,
)(
,
1
4sin
,,~
)(
,~
0
4cos
,,
)(
,
(6)
In these expansions J = 15 and K = 10 were accept-
ed. Combining together all expansions, following ex-
pressions were obtained Another verification of the ac-
curacy of the approximation was carried out by calculat-
ing B
. By definition, δ must be equal to zero.
In fulfilled calculations, it is of the order of 10-3
(Fig. 10).
I
i
i
cnm
I
i
i
ccnm
J
j
j
K
k
k
kji
H
J
j
j
K
k
k
kji
Har
ar
J
j
j
K
k
k
kji
h
J
j
j
K
k
k
kji
har
1
,
1
,
)(
1
sin
1
4sin
,,~
0
cos
0
4cos
,,
),,(
)(
1
sin
1
4sin
,,~
0
cos
0
4cos
,,
),,(
,
.
(7)
As the result, for the specific magnetic configuration
r
or r
completely defined by set of I · J · K
constants, which allow appropriate reconstructions dur-
ing less then 1 s PC time.
2. VERIFICATION OF THE ALGORITHM
In order to check the accuracy of the proposed algo-
rithm, the relative error in the calculations of nmr ,
was defined for several values of m and n, see Fig. 9 for
example. The relative error of calculations turned out to
be less then 10-3.
Fig. 9. The relative error of calculations of r
Fig. 10. The relative error in equality 0 B
for prescribed values of ψ
CONCLUSIONS
On an example of the U-2M torsatron it has been
shown that application of the developed in this paper
algorithm to the specific magnetic configuration allows
one to define completely car or r by set of
I · J ·K constants, which give appropriate reconstruc-
tions during less then 1 s PC time and occupy about
10 Kb of memory storage. The small volume of con-
sumed memory gives the possibility to calculate in ad-
vance the decompositions of the big number of the
30 ISSN 1562-6016. ВАНТ. 2018. №6(118)
magnetic configurations. Then these decompositions
may be used for:
- calculations of along the along the lines of
sight of the applied diagnostics;
- definition of probes locations and RF antenna po-
sition in relation to the last closed magnetic surface;
- procuring of the fast visualization of magnetic
configuration;
- definition of local parameters in transport or wave
codes, for example, in modeling of slow wave propaga-
tion in Wendelstein 7X.
Fig. 11. Profile of the rotational transform
This algorithm may be used also for calculations of
the input parameters – rotational transform profile
(Fig. 11) and Furies decomposition of the LCMS - for
VMEC code (Fig. 12).
Fig. 12. Reconstructed LCMS of torsatron U-2M
ACKNOWLEDGEMENTS
This work has been carried out within the framework of
the EUROfusion Consortium and has received funding
from the Euratom research and training programme
2014-2018 under grant agreement No 633053. The
views and opinions expressed herein do not necessarily
reflect those of the European Commission.
REFERENCES
1. V.N. Kaljuzhnyj, V.V. Nemov // Voprosy Atomnoj
Nauki i Tekhn. Ser. “Termoyadern. Sintez”. 1985, № 2,
p. 35 (in Russian).
2. N.T. Besedin, G.G. Lesnyakov, I.M. Pankratov //
Voprosy Atomnoj Nauki i Tekhn. Ser. “Termoyadern.
Sintez”. 1991, № 1, p. 48 (in Russian).
Article received 02.10.2018
БЫСТРЫЙ И ТОЧНЫЙ АЛГОРИТМ ТРЕХМЕРНОЙ РЕКОНСТРУКЦИИ
МАГНИТНЫХ ПОВЕРХНОСТЕЙ В СТЕЛЛАРАТОРАХ
В. Филиппов, Д. Греков, В. Олефир
Представлен быстрый и точный алгоритм вычисления аппроксимирующих функций, которые устанавли-
вают взаимно однозначное соответствие между пространственными координатами в объеме плазмы и мет-
кой магнитных поверхностей. С помощью этих функций можно вычислять значение метки магнитных по-
верхностей вдоль линий зондирования различных диагностик, определять положение зондов и позицию
ВЧ-антенн относительно крайней замкнутой магнитной поверхности. Более того, стало возможным обеспе-
чить быструю визуализацию магнитной конфигурации торсатрона во время проведения эксперимента.
ШВИДКИЙ ТА ТОЧНИЙ АЛГОРИТМ ТРИВИМІРНОЇ РЕКОНСТРУКЦІЇ
МАГНІТНИХ ПОВЕРХОНЬ У СТЕЛАРАТОРАХ
В. Філіппов, Д. Греков, В. Олефір
Наведено швидкий та точний алгоритм обчислення функцій, що апроксимують магнітні поверхні торсат-
рона. Вони здійснюють взаємно однозначну відповідність між просторовими координатами в об’ємі плазми
та позначкою магнітних поверхонь. За допомогою цих функцій можна обчислювати значення позначки маг-
нітних поверхонь вздовж ліній зондування різних діагностик, визначати розташування зондів та положення
ВЧ-антен відносно останньої замкнутої магнітної поверхні. Більш того, стає можливим забезпечити швидку
візуалізацію магнітної конфігурації торсатрона під час проведення експерименту.
|