Energy dissipation in helicon plasma at the near field of an antenna
The results of a computer simulation of energy dissipation in helicon plasma at near field of an antenna are presented. Results are reported for a double-half-turn antenna, and comparison is made to a double-saddle-coil antenna which demonstrates the distinct inductive and helicon-wave modes. The...
Gespeichert in:
Datum: | 2018 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2018
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/148818 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Energy dissipation in helicon plasma at the near field of an antenna / V. Olshansky // Вопросы атомной науки и техники. — 2018. — № 6. — С. 86-89. — Бібліогр.: 11 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148818 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1488182019-02-19T01:28:51Z Energy dissipation in helicon plasma at the near field of an antenna Olshansky, V. Фундаментальная физика плазмы The results of a computer simulation of energy dissipation in helicon plasma at near field of an antenna are presented. Results are reported for a double-half-turn antenna, and comparison is made to a double-saddle-coil antenna which demonstrates the distinct inductive and helicon-wave modes. The computer simulation revealed a significant wave-particle interaction in the near-field of the antenna that is less than half wavelengths from the antenna. Namely, in addition to the ohmic heating from the currents induced by the helicon wave, electrons can become trapped in the traveling helicon wave via the resonance condition. Представлено результати комп’ютерного моделювання дисипації енергії в геліконній плазмі в ближньому полі антени. Результати наведені для «double-half-turn»-антени та порівнюються з «double-saddle-coil»- антеною, яка демонструє різні індуктивні та геліконні хвильові моди. Комп’ютерне моделювання виявляє суттєву взаємодію хвиля-частинка в ближньому полі антени на відстані менш ніж половина довжини хвилі від антени. В додаток до омічного нагрівання струмом, що індукується геліконною хвилею, електрони можуть бути захопленими геліконною хвилею, що розповсюджується, при наявності резонансу. Представлены результаты компьютерного моделирования диссипации энергии в геликонной плазме в ближнем поле антенны. Результаты даны для «double-half-turn»-антенны и сравниваются с «double-saddlecoil»-антенной, которая демонстрирует различные индуктивные и геликонные волновые моды. Компьютерное моделирование обнаруживает существенное взаимодействие волна-частица в ближнем поле антенны на расстоянии менее половины длины волны от антенны. В дополнение к омическому нагреву током, индуцированным геликонной волной, электроны могут захватываться распространяющейся геликонной волной при наличии резонанса. 2018 Article Energy dissipation in helicon plasma at the near field of an antenna / V. Olshansky // Вопросы атомной науки и техники. — 2018. — № 6. — С. 86-89. — Бібліогр.: 11 назв. — англ. 1562-6016 PACS: 52.50.Dg; 52.50.Qt ;52.65.-y; 52.80.Pi http://dspace.nbuv.gov.ua/handle/123456789/148818 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Фундаментальная физика плазмы Фундаментальная физика плазмы |
spellingShingle |
Фундаментальная физика плазмы Фундаментальная физика плазмы Olshansky, V. Energy dissipation in helicon plasma at the near field of an antenna Вопросы атомной науки и техники |
description |
The results of a computer simulation of energy dissipation in helicon plasma at near field of an antenna are
presented. Results are reported for a double-half-turn antenna, and comparison is made to a double-saddle-coil
antenna which demonstrates the distinct inductive and helicon-wave modes. The computer simulation revealed a
significant wave-particle interaction in the near-field of the antenna that is less than half wavelengths from the
antenna. Namely, in addition to the ohmic heating from the currents induced by the helicon wave, electrons can
become trapped in the traveling helicon wave via the resonance condition. |
format |
Article |
author |
Olshansky, V. |
author_facet |
Olshansky, V. |
author_sort |
Olshansky, V. |
title |
Energy dissipation in helicon plasma at the near field of an antenna |
title_short |
Energy dissipation in helicon plasma at the near field of an antenna |
title_full |
Energy dissipation in helicon plasma at the near field of an antenna |
title_fullStr |
Energy dissipation in helicon plasma at the near field of an antenna |
title_full_unstemmed |
Energy dissipation in helicon plasma at the near field of an antenna |
title_sort |
energy dissipation in helicon plasma at the near field of an antenna |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2018 |
topic_facet |
Фундаментальная физика плазмы |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148818 |
citation_txt |
Energy dissipation in helicon plasma at the near field of an antenna / V. Olshansky // Вопросы атомной науки и техники. — 2018. — № 6. — С. 86-89. — Бібліогр.: 11 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT olshanskyv energydissipationinheliconplasmaatthenearfieldofanantenna |
first_indexed |
2025-07-12T20:20:57Z |
last_indexed |
2025-07-12T20:20:57Z |
_version_ |
1837473905076338688 |
fulltext |
ISSN 1562-6016. ВАНТ. 2018. №6(118)
86 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2018, № 6. Series: Plasma Physics (118), p. 86-89.
ENERGY DISSIPATION IN HELICON PLASMA AT THE NEAR FIELD
OF AN ANTENNA
V. Olshansky
National Science Center “Kharkov Institute of Physics and Technology”,
Institute of Plasma Physics, Kharkiv, Ukraine
The results of a computer simulation of energy dissipation in helicon plasma at near field of an antenna are
presented. Results are reported for a double-half-turn antenna, and comparison is made to a double-saddle-coil
antenna which demonstrates the distinct inductive and helicon-wave modes. The computer simulation revealed a
significant wave-particle interaction in the near-field of the antenna that is less than half wavelengths from the
antenna. Namely, in addition to the ohmic heating from the currents induced by the helicon wave, electrons can
become trapped in the traveling helicon wave via the resonance condition.
PACS: 52.50.Dg; 52.50.Qt ;52.65.-y; 52.80.Pi
INTRODUCTION
As well known the helicon waves propagate in
magnetized plasmas for frequencies between the ion and
electron cyclotron frequencies and have been found to
be very effective in creating high plasma densities both
in linear and toroidal systems. The partial ionization
level in such devices can be large enough. Nevertheless,
the electron distribution function can be strongly non-
equilibrium and can differ considerably from the
Maxwellian one. It affects the discharge properties and
leads to the non-uniform and nonlinear power
absorption. Hence, for adequate simulation of the
energy dissipation in helicon plasma the kinetic plasma
description should be used. One of the important factors
that should be taken in account in a computer simulation
of plasma discharges with moderate partial ionization is
the electron collisions and other collisions that
essentially affect thermal motion of plasma particles.
There are several approaches to deal with collisions in a
plasma discharge. We use the approach that utilizes
Monte Carlo method for simulation collisions between
plasma particles and neutrals in conjunction with the
particle-mesh algorithm [1, 2].
It is so called “Particle-in-cell/Monte Carlo
Collisions” (PM/MCC) method that no assumption
requires for particle distribution function on energy. It
allows using realistic differential cross sections during
collisions simulation. This method is most effective for
the kinetic simulation of plasma discharges of low
pressure, since in such plasma the charged particles
collisions with neutrals are rare enough, and electrons
free path is comparable with characteristic system
length.
This paper presents the results of computer
simulation of energy dissipation in helicon plasma at
near field of an antenna. Results are reported for a
double-half-turn antenna, and comparison is made to a
double-saddle-coil antenna which demonstrates the
distinct inductive and helicon-wave modes.The
computer simulation revealed a significant wave-
particle interaction in the near-field of the antenna that
is less than half wavelengths from the antenna. Namely,
in addition to the ohmic heating from the currents
induced by the helicon wave, electrons can become
trapped in the traveling helicon wave via the resonance
condition given by ω - kpvp=0, where kp and vp are the
wave vector and electron velocity, respectively, parallel
to the axial magnetic field. Considerable attention has
been paid to the ‘‘helicon jump’’ above which the
plasma was assumed to be operating with helicon wave
heating. A large increase in plasma density (n0), coupled
with decreases in plasma potential (Vp), and the electron
temperature (Te), have been computed across the jump,
and a fundamental change in the EM-mode are shown.
1. MODEL GEOMETRY
Geometry of the model corresponds to the model of
standard helicon ion source. It consists from cylindrical
resonator with perfect conducting walls, plasma column
which confined in cylindrical dielectric chamber (a
vessel from quartz or glass). Between the outward
chamber surface and metal wall of the resonator there is
vacuum gap. Plasma resides in the external stationary
magnetic field. RF antenna, which excites the
electromagnetic field, can be placed inward or outward
relative to the plasma.
metallic chamber
z
Az
AL
Fig. 1. The scheme of the antenna placement
The antenna placement scheme is shown in Fig. 1.
Since the antenna is situated in the metallic resonator,
then the Fourier spectra of the current and excited fields
are discrete with respect to axial coordinate. However, if
one assumes the antenna conductors infinite thin, the
spectrum over axial coordinate is found infinite too (the
amplitudes of Fourier harmonics not decrease with
increase of the longitudinal wave number). Therefore in
the computer model the finite dimensions of the antenna
conductors are taken into account. Then the harmonics
amplitudes decrease with increase of the wave number
and Fourier series is convergent (Fig. 2). Analytically
antenna is given by the current that flows in antenna
conductors of finite dimensions h placed on cylindrical
surface of the radius ar (see Fig. 1).
ISSN 1562-6016. ВАНТ. 2018. №6(118) 87
0 1 2 3 4 5 6 7 8 9 10 11 12
-0.4
0
0.4
kz (cm -1)
jz (A/cm2 )
m=1
0 1 2 3 4 5 6 7 8 9 10 11 12
-4E-2
0
4E-2
kz (cm -1)
j (A/cm2 )
m=1
Fig. 2. Axial and azimuthal spectra of the antenna
Nagoya type III with finite dimensions of conductors
taking into account ( aL =14 сm, aR =2 сm, chL =15 сm,
aZ =0 сm, 0I =100 А, mode m=+1)
2. ELECTROMAGNETIC FIELD
Electromagnetic module solves Maxwell’s equations
4 1
rot
c c t
E
B j ,
1
rot
c t
B
E ,
div 4E , div 0B .
The current and charge densities in the Maxwell’s
equations are defined by the distribution functions of
electrons and ions by formulae , ,
,
di e i e
i e
q f j v v ,
, ,
,
di e i e
i e
q f v , where the indexes i and e denote the
kind of the particles, i.e. ions and electrons respectively;
,i ef are distribution function of the particles;
,i eq are the
charges; E and B are the electric and magnetic fields.
The Maxwell’s equations are solved in Euler variables.
The charge and current densities, necessary for their
solution, are computed through the velocities and
coordinates of the separate particles
1
, ,
J
j j
j
t q R t
r r r ,
1
, ,
J
j j j
j
t q t R t
j r v r r .
For the electric and magnetic fields computation pro-
posed in [9] computation scheme is used.
3. SIMULATION PARAMETERS
The dispersion relation for the helicon wave is [3]
22 2
2
||
,
/
pe
ce e
k c
D k
k k
,
where
2 2 2
||k k k is wave number, 1 /e ei .
For the natural modes of the plasma we have 0D .
This dispersion relation is for planar geometry. For
cylindrical geometry one can use the following
definition for the transverse wave
number , /k m n a , where ,m n is the
argument giving the nth zero of the m-th order Bessel
function and a is a cylinder radius. Note, for any
combination of plasma parameters there exists
||k ,
which satisfies 0D , and therefore a helicon wave can
exist for all densities. One can see from dispersion
relation that the limit
||k k corresponds to low plasma
density, and the
||k k limit corresponds to high
plasma density. One can distinguish them by setting
condition 0n n for which
||k k for the 1m
helicon mode. Then, 2k k , and
|| 2.5/k k a [4].
Choosing the typical experimental parameters a=5 cm,
f=13.56 MHz, and B0=200 G we have n041012 cm-3.
4. PARTICLES COLLISIONS ACCOUNTING
During the time t the collision probability of the
particle that moves with the velocity nv t is calculated
by the formula 1 expi g T i iP n r E v t , where
gn r is the target particles density, and the total cross
section T iE depends on the particle energy iE , and
it is defined as a sum over all collision processes
T i j ij
E E .
For the particles collisions accounting we use null
collision method [5]. For this we introduce the fictitious
collision max max maxg T
r
E
n r E v , and total
probability of the collision which not depends on energy
and coordinates of the particle max1 expTP t .
yV
xV
zV
Fig. 3. Velocity vector scattering; is the angle
between velocity and the axis zV before collision, is
the scattering angle, the angle sets the orientation of
the scattering plane in the scattering cone
Further c TN P N random particles are choosing
from the total particles list and for them only the
collision process is calculated. In Fig. 3 the scheme of
the velocity vector scattering and the angles which
correspond to velocity vector direction after collision
are shown. For the electron-ion elastic collisions the
angle is given by the random number from the
interval [0.2]. Distribution of the scattering angle is
given in correspondence to the Spitzer formula for small
angle scattering [6].
88 ISSN 1562-6016. ВАНТ. 2018. №6(118)
2 2 2/ exp /2
t t
P d d
,
where 2 (3/ 2) ln /p . The distribution func-
tion reversal gives
1 2
1 22 ln 1R F R t R
,
where R is a random number from the [0,1] interval.
The empirical formula for the elastic scattering between
electrons and argon atoms is presented in [7]
2
,
4 1 sin / 2 ln 1
E E
E E E
.
Using this formula we write the distribution function
0 0
, sin , sinR F E d E d
.
This function reversal gives the scattering angle cosine
distribution cos 2 2 1
R
E E E . As a result
of the collision the partial electron energy loss can be
calculated by the formula 2 1 cosE m M E .
Consider the process of the impact ionization. Ener-
gy balance for impact ionization is sc cr i izE E E E ,
where scE is the scattered electron energy, crE is the
born electron energy, iE is the electron energy before
collision with neutral atom and izE is the ionization
energy. For the ionization process with no high energy
iE differential cross section is given in the following
form [8]
1
2 2
, .
arctan / 2
iz i
i sc
i iz i sc i
E B E
S E E
E E B E E B E
Here iB E is the function which is specific for the
different gases. In particular, B; eV for Argon.
Introducing the distribution function
/ 2
0 0
( , ) ( , )
sc i izE E E
i sc sc i sc scR S E E dE S E E dE
,
and reversing it we obtain energy distribution of the
scattered electron
tan arctan 2sc i i iz iE B E R E E B E
.
5. SIMULATION RESULTS
The computed axial wave profiles at the frequencies
f = 13.56 and 27.12 MHz are shown in Figs. 4 and 5,
respectively. As one can see in Fig. 4,a, the wave profile
at smaller magnetic field ( ~ 100B G) is independent of
the plasma density. At higher density ( 12 34 10n cm )
and higher magnetic field ( ~ 200B ), it becomes a more
short wavelength mode as shown in Fig. 4,b. The
wavelength at the frequency 27.12f MHz has
density dependence at ~ 100B G and density
independence at ~ 200B G as shown in Figs. 5,a and
5,b. As one can see two types of waves exist here. The
transverse wave number k can be computed from the
wave field structure. For the calculation of the
dispersion relation the axially averaged density and
computed transverse wave number is used. The helicon
wave dispersion relation somewhat deviates from the
simulation data, but this may be the result of the
uniform plasma assumption in the theoretical formula.
a
b
50 W
100 W
150 W
50 W
100 W
150 W
Fig. 4. Axial profile of the wave with frequency
f= 13.56 MHz (distance is accounted from the antenna)
50 W
100 W
150 W
50 W
100 W
150 W
Fig. 5. Axial profile of the wave with frequency
f=27.12 MHz (distance is accounted from the antenna)
By applying an external magnetic field with
different strength a plasma mode transition from E to
H discharge mode is observed. Once the plasma
reaches the H discharge mode, inductive coupling
becomes the dominant plasma heating mechanism. Even
though the external magnetic field is switched off,
plasma can be sustained by the inductively coupled
discharge mode ( H mode). This H mode is
characterized by a localized high density. Then the W
wave propagation helicon mode is switched on by the
external magnetic field and plasma density jump is
ISSN 1562-6016. ВАНТ. 2018. №6(118) 89
observed. The azimuthally symmetric ( 0m mode)
wave at the first harmonic at becomes a helicon wave at
high density ( 12 3~ 2.2 10n cm ) and high magnetic
field ( 30c ).
Fig. 6. Absorbed power density
The RF power absorption density calculated for
f 13.56 MHz is shown in Fig. 6. Most of the power is
absorbed by the electrons in the bulk of the plasma, with
75 % of the total power absorbed at r<4.5 cm and
z<35 cm. The plot of absorbed power density shows a
quasi-periodic structure along z axis and an additional
narrow elongated structure that appears under the
antenna. The quasi-periodic peaks of the power
absorption in the axial direction can be produced by the
RLH eigenmode [10], because the ideally conducting
walls of the source form a cavity for the the eigenmodes
in the axial direction. As a result, the plot Fig. 6 shows a
sequence of peaks in the z direction. The collisional
power dissipation in this mode is associated with the
axial component of the electron current. This
component is considerably increases in the regions with
large radial density gradient. In this case a Hall current
that has a radial component is produced. In the region
with large radial density gradient, the radial Hall current
should be supplemented with strong longitudinal current
to keep the divergence free of the total plasma current
and preclude charge separation. The enhancement of the
axial electron current is the cause of radial localization
of the RF power absorption in the region with strong
radial gradient. The narrow elongated structure in the
power absorption in Fig. 6 is associated with excitation
of electrostatic TG [11] waves. The TG waves are
excited due to mode coupling, which is most
pronounced at the plasma edge, where the radial Hall
current from the RLH wave produces a surface charge.
REFERENCES
1. Y. Weng, M.J. Kushner // Phys. Rev. A. 1990, v. 42,
p. 6192.
2. R. Kinder, M. J. Kushner // J. Appl. Phys. 2001, v. 90,
p. 3699.
3. K.P. Shamrai. Theory of radio-frequency power
absorption in helicon plasmas. Manuscript // Thesis.
V.N. Karazin Kharkiv National University, Kharkov,
2008.
4. A.M. Lieberman, A.J. Lichtenberg. Principles of
Plasma Discharges and Materials Processing / Second
ed. “John Wiley & Sons”, 2005.
5. V. Vahedi, M. Surendra. Monte-Carlo Collision
Model for Particle-in-Cell method: Application to Argon
and Oxygen Discharges // Comp. Phys. Comm. 1995,
v. 87, p. 179-198.
6. L. Spitzer // Jr. Physics of Fully Ionized Gases /
2nd ed., New York: “Wiley-Interscience”, 1962.
7. M. Surendra, D. B. Graves, I.J. Morey // Appl. Phys.
Lett. 1990, v. 56, p. 1022-4.
8. C.B. Opal, W.K. Peterson, E.C. Beaty // J. Chem.
Phys. 1971, v. 55, p. 4100.
9. A.B. Langdon, B.F. Lasinski. Electromagnetic and
relativistic plasma simulation models // Meth. Comput.
Phys. 1976, v.16, p. 327-366.
10. B.N. Breizman, A.V. Arefiev. Radially Localized
Helicon Modes in Nonuniform Plasma // Phys. Rev.
Lett. 2000, v. 84, № 17, p. 3863-3866.
11. K.P. Shamrai, V.B Taranov. Volume and surface rf
power absorption in a helicon plasma source // Plasma
Sources Sci. Technol. 1996, v. 5, p. 474-491.
Article received 12.09.2018
ПОГЛОЩЕНИЕ ЭНЕРГИИ В ГЕЛИКОННОЙ ПЛАЗМЕ В БЛИЖНЕМ ПОЛЕ АНТЕННЫ
В.В. Ольшанский
Представлены результаты компьютерного моделирования диссипации энергии в геликонной плазме в
ближнем поле антенны. Результаты даны для «double-half-turn»-антенны и сравниваются с «double-saddle-
coil»-антенной, которая демонстрирует различные индуктивные и геликонные волновые моды.
Компьютерное моделирование обнаруживает существенное взаимодействие волна-частица в ближнем поле
антенны на расстоянии менее половины длины волны от антенны. В дополнение к омическому нагреву
током, индуцированным геликонной волной, электроны могут захватываться распространяющейся
геликонной волной при наличии резонанса.
ПОГЛИНАННЯ ЕНЕРГІЇ В ГЕЛІКОННІЙ ПЛАЗМІ В БЛИЖНЬОМУ ПОЛІ АНТЕНИ
В.В. Ольшанський
Представлено результати комп’ютерного моделювання дисипації енергії в геліконній плазмі в ближньому
полі антени. Результати наведені для «double-half-turn»-антени та порівнюються з «double-saddle-coil»-
антеною, яка демонструє різні індуктивні та геліконні хвильові моди. Комп’ютерне моделювання виявляє
суттєву взаємодію хвиля-частинка в ближньому полі антени на відстані менш ніж половина довжини хвилі
від антени. В додаток до омічного нагрівання струмом, що індукується геліконною хвилею, електрони
можуть бути захопленими геліконною хвилею, що розповсюджується, при наявності резонансу.
|