Electromagnetic field energy and radiation intensity in a medium with temporal and spatial dispersion outside the transparency domain
Calculation of electromagnetic field energy in a medium with temporal and spatial dispersion outside the transparency domain is discussed. It is shown that charged particle contribution to the energy of electromagnetic perturbations in the general case can be described in terms of a bilinear combi...
Gespeichert in:
Datum: | 2018 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2018
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/148820 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Electromagnetic field energy and radiation intensity in a medium with temporal and spatial dispersion outside the transparency domain / S.A. Trigger, A.G. Zagorodny // Вопросы атомной науки и техники. — 2018. — № 6. — С. 74-78. — Бібліогр.: 24 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148820 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1488202019-02-19T01:29:03Z Electromagnetic field energy and radiation intensity in a medium with temporal and spatial dispersion outside the transparency domain Trigger, S.A. Zagorodny, A.G. Фундаментальная физика плазмы Calculation of electromagnetic field energy in a medium with temporal and spatial dispersion outside the transparency domain is discussed. It is shown that charged particle contribution to the energy of electromagnetic perturbations in the general case can be described in terms of a bilinear combination of the dielectric polarizability of the medium. The explicit form of such contribution is found. The relations obtained are used to generalize the Planck law and Kirchhoff law to the case of an absorptive medium with spatial dispersion. Розраховано енергію електромагнітного поля в середовищі з часовою та просторовою дисперсіями поза областю прозорості. Показано, що в загальному випадку внесок енергії частинок середовища в енергію електромагнітного збурення описується в термінах білінійних комбінацій діелектричної поляризованості середовища. Знайдено явний вигляд такого внеску. Отримані результати використано для узагальнення закону Планка і закону Кірхгофа для поглинального середовища з просторовою дисперсією. Рассчитаны энергии электромагнитного поля в среде с временной и пространственной дисперсиями вне области прозрачности. Показано, что в общем случае вклад энергии частиц среды в энергию электромагнитного возмущения описывается в терминах билинейных комбинаций диэлектрической поляризуемости среды. Найден явный вид такого вклада. Полученные результаты использованы для обобщения закона Планка и закона Кирхгофа для поглощающей среды с пространственной дисперсией. 2018 Article Electromagnetic field energy and radiation intensity in a medium with temporal and spatial dispersion outside the transparency domain / S.A. Trigger, A.G. Zagorodny // Вопросы атомной науки и техники. — 2018. — № 6. — С. 74-78. — Бібліогр.: 24 назв. — англ. 1562-6016 PACS: 52.27.Lw http://dspace.nbuv.gov.ua/handle/123456789/148820 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Фундаментальная физика плазмы Фундаментальная физика плазмы |
spellingShingle |
Фундаментальная физика плазмы Фундаментальная физика плазмы Trigger, S.A. Zagorodny, A.G. Electromagnetic field energy and radiation intensity in a medium with temporal and spatial dispersion outside the transparency domain Вопросы атомной науки и техники |
description |
Calculation of electromagnetic field energy in a medium with temporal and spatial dispersion outside the
transparency domain is discussed. It is shown that charged particle contribution to the energy of electromagnetic
perturbations in the general case can be described in terms of a bilinear combination of the dielectric polarizability
of the medium. The explicit form of such contribution is found. The relations obtained are used to generalize the
Planck law and Kirchhoff law to the case of an absorptive medium with spatial dispersion. |
format |
Article |
author |
Trigger, S.A. Zagorodny, A.G. |
author_facet |
Trigger, S.A. Zagorodny, A.G. |
author_sort |
Trigger, S.A. |
title |
Electromagnetic field energy and radiation intensity in a medium with temporal and spatial dispersion outside the transparency domain |
title_short |
Electromagnetic field energy and radiation intensity in a medium with temporal and spatial dispersion outside the transparency domain |
title_full |
Electromagnetic field energy and radiation intensity in a medium with temporal and spatial dispersion outside the transparency domain |
title_fullStr |
Electromagnetic field energy and radiation intensity in a medium with temporal and spatial dispersion outside the transparency domain |
title_full_unstemmed |
Electromagnetic field energy and radiation intensity in a medium with temporal and spatial dispersion outside the transparency domain |
title_sort |
electromagnetic field energy and radiation intensity in a medium with temporal and spatial dispersion outside the transparency domain |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2018 |
topic_facet |
Фундаментальная физика плазмы |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148820 |
citation_txt |
Electromagnetic field energy and radiation intensity in a medium with temporal and spatial dispersion outside the transparency domain / S.A. Trigger, A.G. Zagorodny // Вопросы атомной науки и техники. — 2018. — № 6. — С. 74-78. — Бібліогр.: 24 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT triggersa electromagneticfieldenergyandradiationintensityinamediumwithtemporalandspatialdispersionoutsidethetransparencydomain AT zagorodnyag electromagneticfieldenergyandradiationintensityinamediumwithtemporalandspatialdispersionoutsidethetransparencydomain |
first_indexed |
2025-07-12T20:21:22Z |
last_indexed |
2025-07-12T20:21:22Z |
_version_ |
1837473929719971840 |
fulltext |
ISSN 1562-6016. ВАНТ. 2018. №6(118)
74 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2018, № 6. Series: Plasma Physics (118), p. 74-78.
BASIC PLASMA PHYSICS
ELECTROMAGNETIC FIELD ENERGY AND RADIATION INTENSITY
IN A MEDIUM WITH TEMPORAL AND SPATIAL DISPERSION
OUTSIDE THE TRANSPARENCY DOMAIN
S.A. Trigger1, A.G. Zagorodny2
1Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
E-mail: satron@mail.ru;
2Bogolyubov Institute for Theoretical Physics, Kyiv, Ukraine
E-mail: azagorodny@bitp.kiev.ua
Calculation of electromagnetic field energy in a medium with temporal and spatial dispersion outside the
transparency domain is discussed. It is shown that charged particle contribution to the energy of electromagnetic
perturbations in the general case can be described in terms of a bilinear combination of the dielectric polarizability
of the medium. The explicit form of such contribution is found. The relations obtained are used to generalize the
Planck law and Kirchhoff law to the case of an absorptive medium with spatial dispersion.
PACS: 52.27.Lw
INTRODUCTION
It is well known that the energy density of an
electromagnetic wave in a medium with spatial and
temporal dispersion can be consistently defined only in
the transparency domain [1-5]. This problem has been
discussed in the literature during decades. After the
pioneer Brillouin result for the electromagnetic wave
energy in dispersive transparent media [6, 7] a lot of
papers has been published on this subject and many
attempts to generalize the Brillouin's approach have
been made to consider absorptive properties of medium.
Nevertheless, the results known from the literature do
not concern the general solution of the problem, but
only various particular cases.
As is known, the energy of an electromagnetic
perturbation in a matter contains the “pure”'
electromagnetic energy and the kinetic energy of charge
carriers obtained due to their motion in the
electromagnetic field [2, 3, 8-10]. If neutral particles
(i.e. atoms or molecules) are present, the additional
potential energy acquired by bound electrons in such
field also should be added [10-16]. Beside that in the
case of absorptive medium some part of electromagnetic
energy is converted into a heat [10, 12, 16]. Thus, the
problem arises to describe consistently all these
quantities. This introduces the principal difficulties to
generalize the Brillouin formula to the case of
dispersive absorptive medium since in such a case the
macroscopic Maxwell equations generate a Pointing-
like equation that does not provide the possibility to
identify explicitly the contribution of the
electromagnetic perturbation energy and the heat
production to the total energy transferred to the medium
by the electromagnetic field, in contrast to the case of an
transparent medium for which the total energy of the
field is well defined and the heat production is absent.
In order to avoid the above-mentioned difficulties, it
is possible to calculate all constituents of the
electromagnetic field energy directly and express them
in terms of dielectric susceptibilities as it was done for
the case of dissipative medium without spatial
dispersion [2, 10]. This approach can be justified using
the energy balance equation which follows from the
combination of the Maxwell equations and the kinetic
equation for charge carriers. Such energy balance
equation for the first time was formulated by
V. Ginzburg for a plasma medium [8, 9]. In spite of the
fact that the general ideas of electromagnetic field
energy description were formulated many years ago it
was not yet applied to the case of absorptive medium
with spatial dispersion.
The purpose of the present contribution is to derive a
general relation for the energy of electromagnetic
perturbation in the medium with temporal and spatial
dispersion outside the transparency domain.
1. BASIC SET OF EQUATIONS AND
STATEMENT OF THE PROBLEM
We start from the Maxwell equations for the
electromagnetic field in a medium in the form that is
often used in the plasma theory [3, 4, 20, 21]
div
1 ( , )
( , ) ,
1 ( , ) 4
( , ) ( , ),
di
( ,t) = 0,
v ( , ) 4 ( , ),
e
e
t
t
c t
t
t t
c t c
t t
π
πρ
∂= −
∂
∂= +
∂
=
B r
rot E r
B r
D r
rot B r J r
D r r
(1)
where ( , )e tJ r and ( , )e tρ r are the external sources, if
present. In the case under consideration
( , ) ( , )t t≡H r B r , and thus the total medium response to
the electromagnetic field is described by the dielectric
permittivity tensor ( , ; )ij t tε ′ ′−r r ,
( , ) ( , ) ( , )
( , ; ) ( , ),
t
i i i
t
ij j
D t E t dt J t
dt d t t E tε
−∞
′ ′ ′
−∞
′ ′= +
′ ′ ′= −
∫
∫ ∫
r r r
r r r r
ISSN 1562-6016. ВАНТ. 2018. №6(118) 75
where ( , )iJ tr is the total induced current that includes
all kinds of responses and can be expressed in terms of
the conductivity tensor ( , ; )ij t tσ ′ ′−r r [21]
( , ) ( , ; ) ) ( , ).
t
i ijJ t dt d t t E j tσ′ ′ ′
−∞
′ ′ ′= −∫r r r r r (2)
Thus
( , ; ) ( ) ( )
4 ( , ; ).
ij ij
t
ij
t
t t t t
dt t t
ε δ δ δ
π σ
′ ′
′
′
′ ′− = − −
′′ ′′ ′+ −∫
r r r r
r r
(3)
We need also equations describing the interaction of
electromagnetic fields with the medium. In what follows
we illustrate the possibility to calculate the energy of
electromagnetic perturbation using a plasma-like
medium. So, we supplement Eqs. (1), (2) with the
kinetic equation for plasma particles
{ }ext
( , ) ( , ) ·
e e
t t
t m m c
α α
α α
∂ ∂ ∂
+ + + + ×
∂ ∂ ∂
v
v F E r B r
r v
· ( , , ) I , f tα α=r v (4)
where ( , , )f tα r v is the distribution function of particles
of α species, Iα is the collision term, extF is the
external force field, if present, other notation is
traditional.
Eq. (4) is valid in the case of classical plasma-like
medium. The appropriate calculations for the case of a
combined plasma-molecular medium can be performed
using the model of bound particles (see, for instance,
Refs. [10, 11, 16-18]). Quantum description of both
plasma and plasma-molecular systems is also possible
[17, 19]. However, since the formulation of the general
approach does not require the explicit form of the
response function (except for the calculation of specific
examples) as is shown below we need to know only the
general relation between the induced macroscopic
currents ( , )tJ r and the self-consistent electric field
( , )tE r given by Eq. (2).
Using Eqs. (1) we obtain the well-known equation
ext di
1
[ ],v
4 4
c
t tπ π
∂ ∂ + + = − ∂ ∂
D B
E B J E EB (5)
that reduces to the Pointing equation in the case of a
nondispersive medium. It can be also used to calculate
the energy Wω of the quasi-monochromatic field in the
case of a weakly absorbing homogeneous medium [3,
10, 13], to recover the well-known Brillouin formula [1,
6, 7].
In order to obtain the general relations we derive an
equation for the energy balance that takes into account
the particle energy explicitly [8-10]. To do this it is
necessary to multiply the kinetic equation (4) by
2 / 2n m vα α ( nα is the density of particles of α species)
and to integrate over the velocity v . The result is
2 2
( , ) ( , )
2 2
n m v n m v
d f X t d f X t
t
α α α α
α α
∂ ∂+
∂ ∂∫ ∫v v v
r
2 2( , )
.
2 2
I [ ]n e v f X t m vv
d d
c v
α α α α
α
∂
+ =
∂
+ ×∫ ∫v E B v (6)
We note that
2
0
2
I
m v
d α
α =∫ v , employ the equality
2 ( , )
2
[ ]n e v f X t
d
c
α α α
α
∂
+ ×
∂∑∫
v
v E B
v
( , ) ,e n d f X tα α α= − = −∫ vv E EJ (7)
and combine Eqs. (6), (7) with Eq. (5).
Thus we obtain an equation for the energy balance [8-
10]
( )
2
2 21
( , ) ( , ) ( , )
8 2
n m cv
t t d f X t
t
α α
α
απ
∂ + + ∂
∑∫E r B r v
[ ]
2
( , ) ( , ) ( , )
4 2
n m cvc
t t d f X tα α
α
απ
∂+ × + ∂
∑∫E r B r v v
r
ext+ ( , ) ( , )=0,t tJ r E r (8)
where the terms responsible for the particle energy and
energy flux are present in the explicit form. We see that
there is no need to extract the particle energy term from
the quantity )( / t∂ ∂E D as it is done in the case of a
weakly absorptive medium [3, 10].
2. ENERGY DENSITY OF THE
ELECTROMAGNETIC FIELD
PERTURBATION WITH REGARD TO THE
PARTICLE ENERGY ACQUIRED UNDER
THE ACTION OF THE FIELD
In the zero-order approximation on the gas-dynamic
parameter ( / 1l L ≪ , where l is the mean free path, L is
the size of the system) the solution of the kinetic
equation (4) may be written in the form of the local
Maxwellian distribution [17]
3/ 2
( , )
( , ) ( ( , ))
exp ,
2 ( , ) 2 ( , )
f X t
n t m m t
n T t T t
α
α α α α
α α απ
=
−
= −
rur v
r r
(9)
where
2
( , ) ( , ),
( , )
( , ) ,
( , )
( / 2)( ( , )) ( , )
( , ) .
3 ( , )
=n t n d f X t
n d f X t
u t
n t
n d m t f X t
T t
n t
α α α
α α
α
α
α α α α
α
α
=
−
=
∫
∫
∫
r v
v v
r
r
v v u r
r
r
(10)
Within such an approximation we can present the full
energy density as given by
,F T KW W W W= + + (11)
where the field FW , thermal TW and kinetic TW
energies respectively are given by
( )2 2
2
1
( , ) ( , ) ,
8
3
( , ) ( , ),
2
( , )
( , ) .
2
F
T
K
W t t
W n t T t
m u t
W n t
α α
α
α α
α
α
π
= +
=
=
∑
∑
E r B r
r r
r
r
(12)
76 ISSN 1562-6016. ВАНТ. 2018. №6(118)
Since TW is the heat produced by the perturbation we
can treat the energy associated with the electromagnetic
field as the sum of FW and KW .
Restricting ourselves by the second order
approximation in the perturbation, we can rewrite the
part of energy KW as
2
2
2
( , )
( , ).
2 2
K
n m t m
W J t
e n
α α α α
α
α α α α
= =∑ ∑
u r
r (13)
Here ( , )J tα r is the partial contribution of the particle of
α species to the induced current ( , ) ( , )J t J tαα
=∑r r .
It should be noted that Eq. (13) directly follows from
the transparent physical reasoning: the kinetic energy
acquired by particles under the action of the
electromagnetic field can be directly expressed in terms
of the averaged induced velocity. Namely this approach
was used to estimate the energy density of particles in
the case of cold plasmas [10, 13]. However, as is seen
Eq. (13) does not require such restrictions.
The generalization of the results obtained in [10, 12,
13] can be achieved using the relation between the
induced current and the electric field (2). In terms of the
generalized dielectric polarizability
( ) ( )( , ) (4 / ) ( , )ij ijiα αχ ω π ω σ ω≡k k (where ( ) ( , )ij
ασ ωk is
the partial contribution of particles of α species to the
conductivity tensor of the system
( ) ( )( , ) ( , )ij ij kα α
α
σ ω σ ω=∑k ) one obtains the following
expression for the electromagnetic perturbation energy
( ) ( )
3 3
2
2
( ) ( )* *
2
,
e e
,
1
8 2 2(2 ) (2 )
1
( , ) ( , )
i i t
i j i j
ij
ki j i j
e i p
d d d d
W
k k k kc
E E
ω ω
α α
ω ω
α α
ω ω
π π ππ π
δ
ωω
ω χ ω χ ω
ω
′
′
′
′− − −
′
′ ′
′
′
=
′
=
′ ′
+ + − ′
′+
⋅
∫ ∫ ∫ ∫
∑
k k r
k k k
k k
kk
kk kk
k k
(14)
where 2 24 /p e n mα α α αω π= .
This is the general relation for a plasma-like
medium.
It should be noted that Eq. (13) can be also used to
estimate the kinetic energy of bound electrons in atoms
and molecules. However, in this case the energy of
electromagnetic perturbation contains along with the
kinetic energy of electrons also the potential energy of
bound electrons in the fields of ions with which they are
bound. In the case of the classical model of the atom-
oscillator [10-15] such energy can be estimated as
2 2
0 ( , )
.
2
m
U m
r t
W n
ω
=
r
Here mn is the density of bound electrons,0ω is the
eigenfrequency of the oscillator, ( , )m tr r is the reduced
coordinate of the bound electron. Since
( , ) ( ( , ) / ( ))m mt d t dt=u r r r , the energy UW may be
expressed in terms of the mean velocity ( , )m tu r , i.e. in
terms of the induced current of the bound electrons.
Thus,
( )
3 3
2
( ) ( ) ( )* *0
2
1
8 2 2(2 ) (2 )
( , ) ( , ) ,
i
U
i t m m
ki lj i j
pm
d d d d
W
E Eω ω
ω ω
ω ω
π π ππ π
ω χ ω χ ω
ω
′
′
′
−
′− − ′
′
=
⋅
′
′
∫ ∫ ∫ ∫ k k
k k
re
k k
k ke
(15)
where ( ) ( , )m
ijχ ωk in the case of the classical model of
an atom-oscillator is given by [18]
2
0( )
2 2
0
2
2
( )
( , ) ,
( ) ( )
4
,
pm mm
ij ij
b m
pm
b
f
d
i
e n
m
ω
χ ω δ
ω ω γ ω
πω
= −
− − + −
=
∫
v
k v
kv kv
(16)
0 ( )mf v is the distribution function of bound particles
(atoms, or molecules), be and bm are the effective
charge and the reduced mass of a bound electron.
So, in the case of a plasma-molecular system the
energy of a perturbation may be written as
( ) ( )
3 3
2
2
2
( ) ( )*
2
,
2 2
( ) ( )* *0
2
1
8 2 2(2 ) (2 )
· 1
( , ) ( , )
( , ) ( , ) ·
e e
.
F K U
i i t
i j i j
ij
ki kj
e i p
m m
ki kj i j
pm
W W W W
d d d d
k k k kc
E E
ω ω
α α
α α
ω ω
ω ω
π π ππ π
δ
ω
ω χ ω χ ω
ω
ω ω χ ω χ ω
ω
′
′
′
′− − −
′
′ ′
′
=
′
= + +
′
=
′ ′ − + +
′+
+ ′+
∫ ∫ ∫ ∫
∑
k k r
k k
k k
kk
kk kk
k k
k k
(17)
This equation remains valid in the case of quantum
description provided the polarizabilities
( ) ( , )ij
αχ ωk ( , , )e i mα = ) are calculated appropriately
(see, for example, Ref. [17,19,20,22]).
In the case of the monochromatic field
*( , ) (1/ 2){ ( ) ) } (e ei t i tt ω ω−= +E r E r E r , after the
averaging over the oscillation period 2 /T π ω= and
the volume of the system V, Eq. (17) in the absence of
spatial dispersion is reduced to
,E BW W W≡ + (18)
where
2 2
( ) ( )* *0
2
, ,
2 2 2
* *
0
,
0
1
( ) ( )
16
1 1
| | , | | | ( ) |
16
1
( ) ,( ), , .
E ij ki kj i j
e i m p
B
i j i j
W E E
W d
V
E E d E E e i
V
α αα
α
α
ω ωδ χ ω χ ω
π ω
π
ω α
+ = +
=
= =
= =
∑
∫
∫
B B r B r
r r r
(19)
,
Using (18), (19) it is easy to recover the results obtained
in Refs. [10,11] for the electric field energy density
outside the transparency domain. For example, in the
case of a cold molecular system
2
( )
2 2
0
( ) ,pmm
ij ij i
ω
χ ω δ
ω ω γω
= −
− +
(20)
that leads to
ISSN 1562-6016. ВАНТ. 2018. №6(118) 77
2 2 2
02
2 2 2 2 2
0
( )1
| | 1 .
16 ( )
pm
EW
ω ω ω
π ω ω γ ω
+
= +
− +
E (21)
In the case of a cold plasma
2
( ) ( ) ,
( )
pee
ij ij
ei
ω
χ ω δ
ω ω ν
= −
+
(22)
where eν is the effective collision frequency, that gives
2
2
2
1
1 | | .
16
pe
E
e
W
ω
π ω ν
= +
+
E (23)
Eqs. (21) and (23) are in agreement with the well-
known Brillouin formulas only in the case of non-
dissipative systems ( 0γ = and 0ν = ).
3. ENERGY DENSITY OF THE
ELECTROMAGNETIC FIELD
FLUCTUATIONS
Within the context of the theory of electromagnetic
fluctuations it is easy to show that Eq. (17) may be also
applied to the description of the energy density of
fluctuations. The statistical averaging of Eq. (17) yields
2 2
3 2 2 2
2 2
( ) ( )*0
2
, ,
1
1
8 2(2 )
( , ) ( , ) .
i j i j
ij
ki kj i j
e i m p
k k k kd d c k
W
k k
E Eα αα
ω
α α
ω δ
π ππ ω
ω ω χ ω χ ω δ δ
ω=
〈 〉 = + + −
+ + 〈 〉
∫ ∫
∑ k
k
k k
(24)
When deriving Eq. (24) we take into account that
* 4(2 ) ( ) ( ) ,i i jj
E E E Eω ωωδ δ π δ δ ω ω δ δ′
′
′
′〈 〉 = − − 〈 〉k kk
k k
where
e e ( , ) ( , ) ,i i
i j i jE E d d E t E tωτ
ω ωδ δ ω δ δ− + ′ ′〈 〉 = 〈 〉∫ ∫k k
Rk rR r
, .t tτ′ ′= − = −R r r
In the case of an equilibrium system i jE E ωδ δ〈 〉k is
given by the fluctuation dissipation theorem (see, for
example, [3,4])
{ }1 1*4
( ) ( , ) ( , ) .i j ij ji
i
E E ω
πδ δ θ ω ω ω
ω
− −〈 〉 = Λ − Λk k k (25)
Here
2 2
2 2
, ( , ) ( , ) .
2
ct
2
h i j
ij ij ij
k kk c
T k
ω ωθ ω ε ω δ
ω
≡ Λ = − −
k k
ℏ ℏ
Further simplification of (24) can be done in the case of
an isotropic system for which
L2 2T( , ) ( , ) ( , ) ,i j i j
ij ij
k k k k
k
k k
ε ω ε ω δ ε ω
= − +
k k
where T ( , )ε ωk and L ( , )ε ωk are the transverse and
longitudinal parts of the dielectric permittivity tensor.
Substituting (25) into (24) yields
0
,W W dω ω
∞
〈 〉 = 〈 〉∫ (26)
where for the general case of the non-transparent
medium we have
2
3
0
2 2
( ) 20
2 2
, ,
2 2 2 2
2 22 2
( ) 2
L
L
L
T
T
0
2 T2
, ,
( )
2
Im ( , )
· 1 | ( , ) |
| ( , ) |
2 Im ( , )
| ( , ) ( ) / ( ) |
1 | ( , ) |
[ ]
[ ]
e i m p
e i m p
W dk k
k
k
k
k k c
k c
ω
αα
α
αα
α
θ ω
π ω
ω ωε ω χ ω
ε ω ω
ε ω
ε ω ω
ω ω χ ω
ω ω
∞
⋅
+
〈 〉 =
+
+
−
+ ⋅ + +
∫
∑
∑
k
k
(27)
that describes the contribution of both longitudinal and
transverse electromagnetic fields.
In the case of negligible dissipation we can use the
approximation of the type
2 2
2 2 2 2 T 2
T
T
Im
Im ( , ) .
| ( , ) ( ) / ( ) |
k c
k
k k c
ε πδ ε ω
ε ω ω ω
− −
≃
In the case of cold plasma for ω ν≫ we have
2
2 3
( )
( ) ( ).pW
cω
ω θ ω ε ω ω ω
π
〈 〉 = > (28)
This relation is in agreement with the well-known
result for the energy density in the dispersive
transparent medium [23] and reproduces the energy
density for transparent plasmas [24].
In the case of a molecular medium ( 0γ → )
2 2 22
0
2 3 2 2 2
0
( )( )
( ) 1 ( ) .
2 ( )
pm
b bW
cω
ω ω ωω θ ω ε ω ε ω
π ω ω
+
〈 〉 = + +
−
(29)
For 0ω ω≫ we come back to the equation of the type
(27).
For 0ω ω≪ the frequency dispersion can be
neglected, and we obtain the result for nondispersive
transparent medium [23]
2
3/2
2 3 0
( )
, where lim ( ).
2 bW
cω ω
ω θ ω ε ε ε ω
π →
〈 〉 = =ɶ ɶ (30)
In the general case Eq. (27) may be rewritten in the
form of the Planck formula modified by the presence of
the medium, i.e.,
3
2 3 ( )/
1 1
( ),
2 1e T
W S
cω ω
ω ω
π
〈 〉 = + − ℏ
ℏ
(31)
where ( )S ω is the function describing the influence of
the medium
3
2
3
0
2 2
( ) 20
2 2
, ,
2 2
2
2
2 22 2
( ) 2
L
L
L
T
0
2 T
,
T
2
,
( )
2
Im ( , )
1 | ( , ) |
| ( , ) |
2 Im ( , )
| ( , ) |
1 | ( , ) | .[ ]
e i m p
e i m p
c
S dkk
k
k
k
k c
k
k c
αα
α
αα
α
ω
πω
ω ωε ω χ ω
ε ω ω
ε ω
ε ω
ω
ω ω χ ω
ω ω
∞
⋅
=
+
+
−
+ ⋅
+
+
+
∫
∑
∑
k
k
(32)
It should be noted that Eq. (8) gives also an explicit
presentation of the energy flux in terms of the
contributions of electromagnetic field and particle
78 ISSN 1562-6016. ВАНТ. 2018. №6(118)
components. In particular, the field part of the flux will
be described by the term
( , ) [ ( , ) ( , )]
4
,c
t t t
π
〈 〉 = ×〈 〉r E r B rS
that in the case of an isotropic system leads to the
radiation intensity given by
2
3
04 2
T
2 2
2
T 2
Im ( , )( )
( ),
2
|
I I
( , ) |
kc
dk k S
k c
k
ω ω
ε ωθ ω ω
π ω ε ω
ω
= =
−
∫ ɶ (33)
where
2 4
3
0 3 2 4 2 2
2
T
T 2
Im( ) 2
, ( )I .
4
| |
c
S dk k
c k cω
εω θ ω ω
π πω ε
ω
= =
−
∫ɶ
CONCLUSIONS
Thus, in the present contribution we derive the general
relations for the electromagnetic-field energy density in
an absorptive medium with temporal and spatial
dispersion. The treatment is based on the assumption
that the energy density of an electromagnetic
perturbation contains both the electromagnetic field
energy and the particle energy acquired in the
perturbation field. The results obtained provide a
possibility to generalize the Planck law and the
Kirchhoff law to the case of an absorptive dispersive
medium. The detailed description of both effects in
specific media will be a matter of further research.
REFERENCES
1. L.D. Landau, E.M. Lifshits. Electrodynamics of
Continuous Medium. Pergamon Press, 1960, 413 p.
2. V.L. Ginzburg. The Propagation of Electromegnetic
Waves in Plasmas. Pergamon Press, 1964, 535 p.
3. A.I. Akhiezer, I.A. Akhiezer, A.G. Sitenko,
K.M. Stepanov, R.V. Polovin. Plasma Electrodyna-
mics. Volume 1. Linear Theory. Pergamon Press, 1975,
431 p.
4. A.G. Sitenko, V.M. Malnev. Plasma Physics Theory.
Chapman and Hall, 1994, 432 p.
5. A.F. Aleksandrov, A.A. Rukhadze. Lectures on
Electrodynamics of Plasma-like Media. Moscow Univ.
Publ., 1999.
6. L. Brillouin. Comptes Rendus hebdomadaires des
Séances de l'Acadèmie des Sciences, Paris, 1921, v. 173,
p. 1167.
7. L. Brillouin. Wave Propagation and Group Velocity.
Academic Press, 1960, 154 p.
8. V.L. Ginzburg // Radiofizika. Izv. Vuzov. 1961, v. 4,
p. 74 (in Russian).
9. B.N. Gershman, V.L. Ginzburg // Radiofizika. Izv.
Vuzov. 1962, v. 5, p. 31 (in Russian).
10. V.M. Agranovich, V.L. Ginzburg. Crystal Optics
with Spatial Dispersion, and Excitons (Springer Series
in Solid-State Sciences). Springer-Verlag, 1984, v. 42.
11. R. Loudon // J. Phys. A. 1970, v. 3, p. 233.
12. Yu.S. Barash, V.L. Ginzburg // JETP. 1975, v. 42,
p. 602.
13. Yu.S. Barash, V.L. Ginzburg // Sov. Phys. Uspekhi.
1976, v. 19, p. 263 (in Russian).
14. R. Ruppin // J. Opt. Soc. Am. A. 1998, v. 15, p. 524.
15. R. Ruppin // Phys. Lett, A. 2002, v. 299, p. 309.
16. F.S.S. Rosa, D.A.R. Dalvit, P.W. Milonni // Phys.
Rev. A. 2010, v. 81, p. 033812.
17. Yu.L. Klimontovich. Statistical Physics. Harwood,
1986, 734 p.
18. Yu.L. Klimontovich, H. Wilhelmsson, I.P. Yaki-
menko, A.G. Zagorodny // Phys. Rep. 1989, v. 175,
p. 263.
19. Yu.L. Klimontovich, A.Y. Shevchenko, I.P. Yaki-
menko, A.G. Zagorodny // Contributions to Plasma
Physics. 1989, v. 29, p. 551.
20. V.P. Silin, A.A. Rukhadze. Electromagnetic
Properties of Plasmas and Plasma-Like Media. M.:
“Gosatomizdat”, 1961.
21. S. Ichimaru. Basic Principles of Plasma Physics. A
Statistical Approach. Benjamin, 1973, 324 p.
22. R. Loudon. Quantum Theory of Light. OUP, 2000,
448 p.
23. M.L. Levin, S.M. Rytov. The Theory of Equilibrium
Thermal Fluctuations in Electrodynamics. M.:
“Science”, 1967, 308 p.
24. S.A. Trigger // Phys. Lett. A. 2007, v. 370, p. 365.
Article received 26.09.2018
ЭНЕРГИЯ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ И ИНТЕНСИВНОСТЬ ИЗЛУЧЕНИЯ В СРЕДЕ
С ВРЕМЕННОЙ И ПРОСТРАНСТВЕННОЙ ДИСПЕРСИЯМИ ВНЕ ОБЛАСТИ ПРОЗРАЧНОСТИ
С.А. Тригер, А.Г. Загородний
Рассчитаны энергии электромагнитного поля в среде с временной и пространственной дисперсиями вне
области прозрачности. Показано, что в общем случае вклад энергии частиц среды в энергию электромагнитного
возмущения описывается в терминах билинейных комбинаций диэлектрической поляризуемости среды. Найден
явный вид такого вклада. Полученные результаты использованы для обобщения закона Планка и закона
Кирхгофа для поглощающей среды с пространственной дисперсией.
ЕНЕРГІЯ ЕЛЕКТРОМАГНІТНОГО ПОЛЯ ТА ІНТЕНСИВНІСТЬ ВИПРОМІНЮВАННЯ
В СЕРЕДОВИЩІ З ЧАСОВОЮ І ПРОСТОРОВОЮ ДИСПЕРСІЯМИ ПОЗА ОБЛАСТЮ ПРОЗОРОСТІ
С.О. Трігер, А.Г. Загородній
Розраховано енергію електромагнітного поля в середовищі з часовою та просторовою дисперсіями поза
областю прозорості. Показано, що в загальному випадку внесок енергії частинок середовища в енергію
електромагнітного збурення описується в термінах білінійних комбінацій діелектричної поляризованості
середовища. Знайдено явний вигляд такого внеску. Отримані результати використано для узагальнення закону
Планка і закону Кірхгофа для поглинального середовища з просторовою дисперсією.
|