Investigation of DC glow discharge in CO₂ using optical emission spectroscopy

The results of investigations of a glow discharge in carbon dioxide by the method of optical emission spectroscopy are presented. Processes in negative glow, positive column and anode glow are considered in detail. In the negative glow, bright radiation lines of both atoms and molecules and their i...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Lisovskiy, V.A., Krol, H.H., Dudin, S.V.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2018
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148832
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Investigation of dc glow discharge in CO₂ using optical emission spectroscopy / V.A. Lisovskiy, H.H. Krol, S.V. Dudin // Вопросы атомной науки и техники. — 2018. — № 6. — С. 206-209. — Бібліогр.: 29 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148832
record_format dspace
spelling irk-123456789-1488322019-02-19T01:29:38Z Investigation of DC glow discharge in CO₂ using optical emission spectroscopy Lisovskiy, V.A. Krol, H.H. Dudin, S.V. Низкотемпературная плазма и плазменные технологии The results of investigations of a glow discharge in carbon dioxide by the method of optical emission spectroscopy are presented. Processes in negative glow, positive column and anode glow are considered in detail. In the negative glow, bright radiation lines of both atoms and molecules and their ions are observed: O, O⁺ , CO, O₂, CO⁺ and molecular continuum. In the positive column, a weak continuum and emission lines of CO₂, CO, and O₂ molecules are seen. The emission lines of CO molecules dominate in the anode glow against the background of the continuum, and also lines of molecular and atomic oxygen are visible. Axial intensity distributions of a number of lines are presented for the entire discharge gap between the cathode and the anode. Наведені результати досліджень тліючого розряду у вуглекислому газі методом оптичної емісійної спектроскопії. Розглянуто докладно процеси в негативному світінні, позитивному стовпі і анодному світінні. У негативному світінні спостерігаються яскраві лінії випромінювання як атомів, так і молекул і їх іонів: O, O⁺ , СО, О₂, СО⁺ , та молекулярний континуум. У позитивному стовпі видно слабкий континуум і лінії випромінювання молекул CO₂, CO та O₂. В анодному світінні на фоні континууму домінують лінії випромінювання молекул CO, а також видні лінії O₂ і атомарного кисню. Наведені осьові профілі інтенсивностей ряду ліній для всього розрядного проміжку між катодом та анодом. Приведены результаты исследований тлеющего разряда в углекислом газе методом оптической эмиссионной спектроскопии. Рассмотрены подробно процессы в отрицательном свечении, положительном столбе и анодном свечении. В отрицательном свечении наблюдаются яркие линии излучения как атомов, так и молекул и их ионов: O, O⁺ , СО, О₂, СО⁺ , и молекулярный континуум. В положительном столбе видны слабый континуум и линии излучения молекул CO₂, CO и O₂. В анодном свечении на фоне континуума доминируют линии излучения молекул CO, а также видны линии O₂ и атомарного кислорода. Представлены осевые профили интенсивностей ряда линий для всего разрядного промежутка между катодом и анодом 2018 Article Investigation of dc glow discharge in CO₂ using optical emission spectroscopy / V.A. Lisovskiy, H.H. Krol, S.V. Dudin // Вопросы атомной науки и техники. — 2018. — № 6. — С. 206-209. — Бібліогр.: 29 назв. — англ. 1562-6016 PACS: 52.80.Hc http://dspace.nbuv.gov.ua/handle/123456789/148832 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Низкотемпературная плазма и плазменные технологии
Низкотемпературная плазма и плазменные технологии
spellingShingle Низкотемпературная плазма и плазменные технологии
Низкотемпературная плазма и плазменные технологии
Lisovskiy, V.A.
Krol, H.H.
Dudin, S.V.
Investigation of DC glow discharge in CO₂ using optical emission spectroscopy
Вопросы атомной науки и техники
description The results of investigations of a glow discharge in carbon dioxide by the method of optical emission spectroscopy are presented. Processes in negative glow, positive column and anode glow are considered in detail. In the negative glow, bright radiation lines of both atoms and molecules and their ions are observed: O, O⁺ , CO, O₂, CO⁺ and molecular continuum. In the positive column, a weak continuum and emission lines of CO₂, CO, and O₂ molecules are seen. The emission lines of CO molecules dominate in the anode glow against the background of the continuum, and also lines of molecular and atomic oxygen are visible. Axial intensity distributions of a number of lines are presented for the entire discharge gap between the cathode and the anode.
format Article
author Lisovskiy, V.A.
Krol, H.H.
Dudin, S.V.
author_facet Lisovskiy, V.A.
Krol, H.H.
Dudin, S.V.
author_sort Lisovskiy, V.A.
title Investigation of DC glow discharge in CO₂ using optical emission spectroscopy
title_short Investigation of DC glow discharge in CO₂ using optical emission spectroscopy
title_full Investigation of DC glow discharge in CO₂ using optical emission spectroscopy
title_fullStr Investigation of DC glow discharge in CO₂ using optical emission spectroscopy
title_full_unstemmed Investigation of DC glow discharge in CO₂ using optical emission spectroscopy
title_sort investigation of dc glow discharge in co₂ using optical emission spectroscopy
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2018
topic_facet Низкотемпературная плазма и плазменные технологии
url http://dspace.nbuv.gov.ua/handle/123456789/148832
citation_txt Investigation of dc glow discharge in CO₂ using optical emission spectroscopy / V.A. Lisovskiy, H.H. Krol, S.V. Dudin // Вопросы атомной науки и техники. — 2018. — № 6. — С. 206-209. — Бібліогр.: 29 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT lisovskiyva investigationofdcglowdischargeinco2usingopticalemissionspectroscopy
AT krolhh investigationofdcglowdischargeinco2usingopticalemissionspectroscopy
AT dudinsv investigationofdcglowdischargeinco2usingopticalemissionspectroscopy
first_indexed 2025-07-12T20:23:45Z
last_indexed 2025-07-12T20:23:45Z
_version_ 1837474071942529024
fulltext ISSN 1562-6016. ВАНТ. 2018. №6(118) 206 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2018, № 6. Series: Plasma Physics (118), p. 206-209. INVESTIGATION OF DC GLOW DISCHARGE IN CO2 USING OPTICAL EMISSION SPECTROSCOPY V.A. Lisovskiy, H.H. Krol, S.V. Dudin V.N. Karazin Kharkiv National University, Kharkiv, Ukraine E-mail: lisovskiy@yahoo.com The results of investigations of a glow discharge in carbon dioxide by the method of optical emission spectros- copy are presented. Processes in negative glow, positive column and anode glow are considered in detail. In the negative glow, bright radiation lines of both atoms and molecules and their ions are observed: O, O+, CO, O2, CO+ and molecular continuum. In the positive column, a weak continuum and emission lines of CO2, CO, and O2 mole- cules are seen. The emission lines of CO molecules dominate in the anode glow against the background of the con- tinuum, and also lines of molecular and atomic oxygen are visible. Axial intensity distributions of a number of lines are presented for the entire discharge gap between the cathode and the anode. PACS: 52.80.Hc INTRODUCTION Direct current glow discharge in CO2 is widely used for pumping carbon dioxide gas-discharge lasers [1]. In recent years, there has been a growing interest in plasma conversion of greenhouse gases (the main one of which is CO2), to compounds such as methanol (CH3OH) or synthesis gas (CO/H2), that are important raw materials for the chemical industry or can be used as a fuel for internal combustion engines [2-4]. In addition, CO2 is a significant part of atmospheres on the planets and satel- lites of the solar system. Therefore, it is of interest to convert CO2 into oxygen and carbon monoxide CO, which can be used as a rocket fuel [5-8]. Studies of dis- charges in CO2 are also carried out because of their use in various types of plasma reactors. This paper is devoted to optical spectral analysis of the structure of a glow discharge in carbon dioxide. Alt- hough there are many studies in the literature on the properties of glow discharge in various gases (see, for example, [9-23]) and, in particular, in CO2 [24-27], but usually its spectral studies were carried out in short tubes, or the authors measured the radiation spectra of a discharge at several specific points (cathode glow, nega- tive glow or positive column) without plotting axial profiles of the radiation line intensities along the entire tube. The aim of this work was the experimental study of the longitudinal structure of a glow discharge in car- bon dioxide by means of optical emission spectroscopy. 1. EXPERIMENTAL To investigate the glow discharge, a discharge chamber was used schematically shown in Fig. 1. The discharge was ignited in the horizontal part of T-shaped tube made of glass. The anode could move along the axis of the discharge tube (internal diameter 56 mm), its diameter is 55 mm. In this paper, the distance between the cathode and the anode was equal to 300 mm. Carbon dioxide was fed into the vessel to the pres- sure p = 1 Torr. The investigations were carried out at a discharge current of 40 mA. A compact Qmini spectrometer (RGB Lasersys- teme) was used to measure the emission spectra of the discharge plasma. For the analysis of molecular gas spectra, we used the Pearse and Gaydon handbook [28]. 2. EXPERIMENTAL RESULTS Let us consider the emission spectra emerging from the brightest parts of a glow discharge in carbon diox- ide. In particular, we pay attention to the spectra for negative glow (Fig. 2), a positive column (Fig. 3), and anode glow (Fig. 4). See Fig. 2 shows that the spectrum of negative glow differs in the variety of radiation lines. It contains bright lines of atomic oxygen: 777 nm (corresponds to electron transition from the 5P level to the 5S0 level), 844 nm (from 3P to 3S0) and 926 nm (from 5D0 to 5P). In the visible part of the spectrum, the molecular continuum is clearly pronounced, which extends from about 350 nm to 800 nm. The reason for its appearance, apparently, is the dissociation of electron-vibrationally excited CO2 molecules. Over the continuum background, bright lines of CO molecules (Angstrom system, the transition B 1  A 1) and O2 (Schumann-Runge system, B 3  X 3) are observed. In the negative glow, the line of the molecular ion CO+ (Comet-tail system, the transition A 2  2to the ground state) with the wavelength of 427 nm is also well expressed, as well as lines of atomic oxygen ions, for example, with the wavelength of 391 nm (the transition from 2D to 2P0). Such a large number of emission lines of neutral molecules, atoms and their ions indicate that a large number of fast elec- trons enter the negative glow from the cathode layer, capable not only of exciting or dissociating molecules of Anode V R A Gas supply Pumping DC generator Cathode Fig. 1. The scheme of the experimental setup ISSN 1562-6016. ВАНТ. 2018. №6(118) 207 carbon dioxide, but even of ionization of the resulting dissociation products. Now consider the optical emission spectrum from the positive column. It follows from Fig. 3 that the in- tensities of the emission lines of the positive column are small, about an order of magnitude lower than in the negative glow. The spectrum consists of emission lines of the CO molecules that dominate, as well as the weak- er CO2 and O2 lines. The intensity of the lines of atomic oxygen becomes comparable with the noise level of the spectrometer. The molecular continuum became less visible. Apparently, in the positive column, the dissocia- tion of CO2 molecules is obstructed, as indicated by the absence of emission lines for atomic oxygen. The role of the positive column is that it transfers the current from the cathode parts of the discharge (cathode sheath, negative glow and dark Faraday space), to the anode. Thus, in the positive column, such a value of the reduced electric field E/p is established, at which the production of electrons due to ionization compensates for all their losses due to ambipolar exit to the walls of the tube and attachment to gas molecules [14, 16]. Since at the gas pressure of 1 Torr the ambipolar losses are low and attaching to weakly electronegative oxygen molecules is not significant, the high electron energies are not needed to maintain a positive column in CO2. Therefore, the electrons excite the existing molecules of background CO2, as well as the molecules CO and O2, entering the positive column from the negative glow. Finally, under the conditions of our experiments, an- odic glow is observed near the anode surface (photo in Fig. 5). The emission spectrum in this case predomi- nantly consists of lines of CO molecules, but bright lines of O2 are visible as well, and even lines of atomic oxygen disappearing in the positive column appear. From this, as well as from the presence of intense mo- lecular continuum, it can be concluded that in the anode glow the electron energy is sufficient for the dissocia- tion of CO2 molecules and, apparently, the dissociation of O2 molecules can also occur. The anode layer controls the flow of electrons to the anode, equating the density of the chaotic current to its surface to the current density in the external circuit. At low pressures, when a directional and/or diffusion flux of fast electrons accelerated in the cathode sheath reach- es the anode, the voltage drop on the anode layer has a negative sign, which leads to the repulsion of low- energy electrons back into the plasma [10, 11, 15, 17]. However, under our conditions, fast electrons overcome only a quarter of the gap between the electrodes. Almost all the rest of the tube is filled with a positive column that contacts the anode through the anode layer. Now consider the axial profiles of several character- istic lines. Fig. 5 shows the discharge photo and axial profiles of the emission lines of CO2 (369 nm), CO (412 and 483 nm) and O2 (437 nm) molecules, as well as O (777 nm) and CO+ (427 nm) molecular ions. The cath- ode in the photo is located on the left, and the anode is on the right. The thickness of the cathode layer under our conditions does not exceed 2 mm. After the cathode layer, the negative glow follows, next the dark Faraday space, the positive column, the dark anode space, and the thin anode glow film (about 1 mm thick). Let's pay attention to the processes in the negative glow. Electrons emitted from the cathode surface are accelerated in a high electric field, and electronic ava- lanches develop in the sheath. An intensive flow of fast electrons enters the negative glow from the cathode sheath. In the negative glow, the electric field strength is very low, the acceleration of the electrons stops, there- fore in this region of the discharge the electrons only lose energy. The energy of a significant part of the fast electrons leaving the cathode layer exceeds the energy corresponding to the maxima of the molecular excita- tion cross sections. These electrons lose energy effec- tively in inelastic collisions, so the probability of the 300 400 500 600 700 800 900 10 -3 10 -2 10 -1 391 O + 608 CO 561 CO 519 CO 483 CO 427 CO + 412 CO 926 O 844 O z = 3 mmIn te n si ty , n W /n m , nm 437 O 2 777 O Fig. 2. Spectrum of radiation emitted from the nega- tive glow (distance from the cathode is z = 3 mm) 300 400 500 600 700 800 900 10 -3 10 -2 437 O 2 369 CO 2 662 CO 608 CO 451 CO In te n si ty , n W /n m , nm z = 150 mm 561 CO 519 CO 483 CO Fig. 3. Radiation spectrum emerging from the positive column (distance from the cathode is z = 150 mm) 300 400 500 600 700 800 900 10 -3 10 -2 10 -1 662 CO 451 CO In te n si ty , n W /n m , nm z = 299 mm 608 CO 561 CO 519 CO 483 CO 412 CO 844 O 437 O 2 777 O Fig. 4. Optical emission spectrum from the anode glow (distance from the cathode is z = 299 mm) 208 ISSN 1562-6016. ВАНТ. 2018. №6(118) excitation of molecules by such electrons increases, and therefore the maxima are reached in the intensity pro- files of the lines at some distance from the boundary of the cathode sheath. It can be seen from see Fig. 5 that over the whole negative glow the intensities of all the lines are mono- tonically decreasing (with equal rate for all the lines) according to an exponential law. The length of the nega- tive glow is equal to the distance that the fastest elec- trons pass through the gas, coming from the cathode surface and passing through the entire cathode sheath, without experiencing a large number of inelastic colli- sions. In the dark Faraday space, the intensities of all the investigated emission lines continue to decrease until they become comparable with the noise level of the spectrometer. The energy of the electrons is insufficient to accomplish ionizing collisions. The current transfer is accomplished predominantly by the diffusion flux of electrons that are fast in the negative glow, but are ran- domized and lose a significant part of their energy to- ward its end. These more energetic electrons, with fur- ther distance from the cathode, are partially lost on the walls of the tube. Therefore, starting from some distance to the cathode, these electrons can not carry the dis- charge current, the electric field strength increases, and a positive column appears. Under our conditions, it was almost homogeneous, but in its central part a brighter narrow region formed. This may be a single striation, which is usually observed at low gas pressures and low discharge currents [19, 29]. A dark anode space appears between the positive column and the anode glow, in which the minima are observed on the axial profiles of the intensities of the emission lines. The anode plays the role of the electron collector, the space near it is depleted by fast electrons that go to its surface. The depleted region glows weaker, which we see as a dark space. In the anode glow, the intensity of the CO lines becomes even higher than in the negative glow. Here, the electrons are accelerated to the anode surface in the positive anode voltage drop. CONCLUSIONS Thus, in the present work, a glow discharge in CO2 was studied by optical emission spectroscopy. The re- sults are given for gas pressure of 1 Torr and discharge current of 40 mA. Particular attention is paid to the pro- cesses occurring in the negative glow, the positive col- umn and the anode glow. It is shown that in the negative glow bright emission lines of both atoms and molecules and their ions are observed: atomic oxygen 777, 844 and 926 nm; atomic oxygen ions O+ (391 nm); bright lines of CO (the Angstrom system) and O2 (Schumann-Runge system); molecular ion CO+ (427 nm, Comet-tail sys- tem). Also, the molecular continuum (350 to 800 nm) is clearly pronounced. In the positive column, the lines of ions and atoms disappear, against the background of a weak continuum, only the emission of CO2, CO and O2 molecules is seen. In the anode glow the intensity of the continuum, the molecular and atomic lines increase sig- nificantly and may even exceed the corresponding in- tensities in the negative glow. Axial intensity profiles of a number of characteristic emission lines have been constructed for the entire interval between the cathode and the anode. REFERENCES 1. C.E. Webb, J.D.C. Jones (Eds.). Handbook of Laser Technology and Applications. Bristol and Philadelphia: “IOP Publishing Ltd”, 2004, p. 1555. 2. L.M. Zhou et al. Nonequilibrium Plasma Reforming of Greenhouse Gases to Synthesis Gas // Energy and Fuels. 1998, v. 12, № 6, p. 1191-1199. 3. A. Indarto, J.-W. Choi, H. Lee, H.K. Song. Conver- sion of CO2 by Gliding Arc Plasma // Environ. Eng. Sci. 2006, v. 23, №6, p. 1033-1043. 4. S. Paulussen, B. Verheyde, et al. Conversion of car- bon dioxide to value-added chemicals in atmospheric pressure dielectric barrier discharges // Plasma Sources Sci. Technol. 2010, v. 19, p. 034015. 5. J.L. Fox. CO2 + dissociative recombination: a source of thermal and nonthermal C on Mars // J. Geophys. Research A. 2004, v. 109, № 8, p. 08306. 6. V. Guerra, T. Silva, P. Ogloblina, et al. The case for in situ resource utilisation for oxygen production on Mars by nonequilibrium plasmas // Plasma Sources Sci. Technol. 2017, v. 26, № 11, p. 11LT01. 7. G.A. Landis, D.L. Linne. Mars rocket vehicle using in situ propellants // J. Spacecr. Rockets. 2001, v. 38, p. 730-735. 8. J.J. Hartvigsen, S. Elangovan, D. Larsen, et al. Chal- lenges of solid oxide electrolysis for production of fuel and oxygen from Mars atmospheric CO2 // ECS Trans- actions. 2015, v. 68, p. 3563-3583. 9. V.A. Lisovskiy, K.P. Artushenko, V.D. Yegorenkov. Normal mode of dc discharge in argon, hydrogen and oxygen // Problems of Atomic Science and Technology. Ser. “Plasma Physics”. 2016, № 6, p. 223-226. 10. V.A. Lisovskiy, K.P. Artushenko, V.D. Yegoren- kov. Inter-electrode distance effect on dc discharge characteristics in nitrogen // Problems of Atomic Science and Technology. Ser. “Plasma Physics”. 2015, № 4, p. 202-205. C A 0 50 100 150 200 250 300 10 -4 10 -3 10 -2 10 -1 In te n si ty , n W /n m z, mm , nm 369 - CO 2 412 - CO 427 - CO + 437 - O 2 483 - CO 777 - O Fig. 5. Photo of the glow discharge and axial profiles of intensity of different lines ISSN 1562-6016. ВАНТ. 2018. №6(118) 209 11. V.A. Lisovskiy, K.P. Artushenko, V.D. Yegoren- kov. Influence of the inter-electrode gap on the cathode sheath characteristics // Physics of Plasmas. 2017, v. 24, № 5, p. 053501. 12. V. Lisovskiy, V. Yegorenkov. Validating the colli- sion-dominated Child–Langmuir law for a dc discharge cathode sheath in an undergraduate laboratory // Eur. J. Phys. 2009, v.30, № 6, p. 1345. 13. V.A. Lisovskiy, E.P. Artushenko, V.D. Yegorenkov. Calculating reduced electric field in diffusion regime of dc discharge positive column // Problems of atomic sci- ence and technology. Ser. “Plasma Physics”. 2015, № 1, p. 205. 14. V.A. Lisovskiy, K.P. Artushenko, et al. Reduced electric field in the positive column of the glow dis- charge in argon // Vacuum. 2015, v. 122, p. 75-81. 15. V.A. Lisovskiy, V.A. Derevianko, V.D. Yegoren- kov. The Child-Langmuir collision laws for the cathode sheath of glow discharge in nitrogen // Vacuum. 2014, v. 103, p. 49-56. 16. V.A. Lisovskiy, E.P. Artushenko, V.D. Yegorenkov. Simple model of reduced electric field in ambipolar regime of dc discharge positive column in hydrogen // J. Plasma Physics. 2015, v. 81, p. 905810312. 17. V.A. Lisovskiy, S.D. Yakovin. Experimental Study of a Low-Pressure Glow Discharge in Air in Large- Diameter Discharge Tubes // Plasma Physics Reports. 2000, v. 26, № 12, p. 1066-1075. 18. E.A. Bogdanov et al. Influence of the transverse dimension on the structure and properties of dc glow discharges // Phys. Plasmas. 2010, v. 17, p. 103502. 19. V.A. Lisovskiy, V.A. Koval, E.P. Artushenko, V.D. Yegorenkov. Validating the Goldstein–Wehner law for the stratified positive column of dc discharge in an undergraduate laboratory // Eur. J. Phys. 2012, v. 33, № 6, p. 1537-1545. 20. A. Engel et al. Radial coherence of the normal glow discharge // Phys. Lett. A. 1972, v. 42, p. 191-192. 21. V.A. Lisovskiy, S.D. Yakovin. Cathode Layer Char- acteristics of a Low-Pressure Glow Discharge in Argon and Nitrogen // Technical Physics Letters. 2000, v. 26, № 10, p. 891-893. 22. V.A. Lisovskiy, E.P. Artushenko, V.D. Yegorenkov. Applicability of Child-Langmuir collision laws for de- scribing a dc cathode sheath in N2O // J. Plasma Phys- ics. 2014, v. 80, p. 319-327. 23. G. Cicala et al. Study of positive column of glow discharge in nitrogen by optical emission spectroscopy and numerical simulation // Plasma Sourses Sci. Tech- nol. 2009, v. 18, № 2, p. 025032. 24. V.A. Lisovskiy, H.H. Krol, R.O. Osmayev, et al. Child-Langmuir Law for Cathode Sheath of Glow Dis- charge in CO2 // Problems of Atomic Science and Tech- nology. Ser. “Plasma Physics”. 2017, № 1, p. 140-143. 25. P. Bayley et al. Cathode region of a discharge in CO2 // Phys. Rev. A. 1986, v. 34, № 1, p. 360-371. 26. E.F. Mendez-Martinez et al. Langmuir Probe and Optical Emission Spectroscopy Studies of Low-Pressure Gas Mixture of CO2 and N2 // Plasma Science and Technology. Ser. “Plasma Physics”. 2010, v.12, p. 314- 319. 27. R. Castell et al. Glow Discharge Plasma Properties of Gases of Environmental Interest // Brazilian J. Phys. 2004, v. 34, № 4B, p. 1734–1737. 28. R.W.B. Pearse, A.G. Gaydon. The identification of molecular spectra. London: “Chapman”, 1950. 29. V.A. Lisovskiy, V.A. Derevianko, V.D. Yegoren- kov, Positive column contraction of the glow discharge in nitrogen // Problems of atomic science and technolo- gy. Ser. “Plasma Physics”. 2017, № 1, p. 144-147. Article received 12.09.2018 ИССЛЕДОВАНИЕ ТЛЕЮЩЕГО РАЗРЯДА В CO2 МЕТОДОМ ОПТИЧЕСКОЙ ЭМИССИОННОЙ СПЕКТРОСКОПИИ В.А. Лисовский, Г.Г. Кроль, С.В. Дудин Приведены результаты исследований тлеющего разряда в углекислом газе методом оптической эмисси- онной спектроскопии. Рассмотрены подробно процессы в отрицательном свечении, положительном столбе и анодном свечении. В отрицательном свечении наблюдаются яркие линии излучения как атомов, так и моле- кул и их ионов: O, O+, СО, О2, СО+, и молекулярный континуум. В положительном столбе видны слабый континуум и линии излучения молекул CO2, CO и O2. В анодном свечении на фоне континуума доминируют линии излучения молекул CO, а также видны линии O2 и атомарного кислорода. Представлены осевые про- фили интенсивностей ряда линий для всего разрядного промежутка между катодом и анодом. ДОСЛІДЖЕННЯ ТЛІЮЧОГО РОЗРЯДУ В CO2 МЕТОДОМ ОПТИЧНОЇ ЕМІСІЙНОЇ СПЕКТРОСКОПІЇ В.О. Лісовський, Г.Г. Кроль, С.В. Дудін Наведені результати досліджень тліючого розряду у вуглекислому газі методом оптичної емісійної спек- троскопії. Розглянуто докладно процеси в негативному світінні, позитивному стовпі і анодному світінні. У негативному світінні спостерігаються яскраві лінії випромінювання як атомів, так і молекул і їх іонів: O, O+, СО, О2, СО+, та молекулярний континуум. У позитивному стовпі видно слабкий континуум і лінії випромі- нювання молекул CO2, CO та O2. В анодному світінні на фоні континууму домінують лінії випромінювання молекул CO, а також видні лінії O2 і атомарного кисню. Наведені осьові профілі інтенсивностей ряду ліній для всього розрядного проміжку між катодом та анодом.