Investigation of DC glow discharge in CO₂ using optical emission spectroscopy
The results of investigations of a glow discharge in carbon dioxide by the method of optical emission spectroscopy are presented. Processes in negative glow, positive column and anode glow are considered in detail. In the negative glow, bright radiation lines of both atoms and molecules and their i...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2018
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148832 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Investigation of dc glow discharge in CO₂ using optical emission spectroscopy / V.A. Lisovskiy, H.H. Krol, S.V. Dudin // Вопросы атомной науки и техники. — 2018. — № 6. — С. 206-209. — Бібліогр.: 29 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148832 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1488322019-02-19T01:29:38Z Investigation of DC glow discharge in CO₂ using optical emission spectroscopy Lisovskiy, V.A. Krol, H.H. Dudin, S.V. Низкотемпературная плазма и плазменные технологии The results of investigations of a glow discharge in carbon dioxide by the method of optical emission spectroscopy are presented. Processes in negative glow, positive column and anode glow are considered in detail. In the negative glow, bright radiation lines of both atoms and molecules and their ions are observed: O, O⁺ , CO, O₂, CO⁺ and molecular continuum. In the positive column, a weak continuum and emission lines of CO₂, CO, and O₂ molecules are seen. The emission lines of CO molecules dominate in the anode glow against the background of the continuum, and also lines of molecular and atomic oxygen are visible. Axial intensity distributions of a number of lines are presented for the entire discharge gap between the cathode and the anode. Наведені результати досліджень тліючого розряду у вуглекислому газі методом оптичної емісійної спектроскопії. Розглянуто докладно процеси в негативному світінні, позитивному стовпі і анодному світінні. У негативному світінні спостерігаються яскраві лінії випромінювання як атомів, так і молекул і їх іонів: O, O⁺ , СО, О₂, СО⁺ , та молекулярний континуум. У позитивному стовпі видно слабкий континуум і лінії випромінювання молекул CO₂, CO та O₂. В анодному світінні на фоні континууму домінують лінії випромінювання молекул CO, а також видні лінії O₂ і атомарного кисню. Наведені осьові профілі інтенсивностей ряду ліній для всього розрядного проміжку між катодом та анодом. Приведены результаты исследований тлеющего разряда в углекислом газе методом оптической эмиссионной спектроскопии. Рассмотрены подробно процессы в отрицательном свечении, положительном столбе и анодном свечении. В отрицательном свечении наблюдаются яркие линии излучения как атомов, так и молекул и их ионов: O, O⁺ , СО, О₂, СО⁺ , и молекулярный континуум. В положительном столбе видны слабый континуум и линии излучения молекул CO₂, CO и O₂. В анодном свечении на фоне континуума доминируют линии излучения молекул CO, а также видны линии O₂ и атомарного кислорода. Представлены осевые профили интенсивностей ряда линий для всего разрядного промежутка между катодом и анодом 2018 Article Investigation of dc glow discharge in CO₂ using optical emission spectroscopy / V.A. Lisovskiy, H.H. Krol, S.V. Dudin // Вопросы атомной науки и техники. — 2018. — № 6. — С. 206-209. — Бібліогр.: 29 назв. — англ. 1562-6016 PACS: 52.80.Hc http://dspace.nbuv.gov.ua/handle/123456789/148832 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии |
spellingShingle |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии Lisovskiy, V.A. Krol, H.H. Dudin, S.V. Investigation of DC glow discharge in CO₂ using optical emission spectroscopy Вопросы атомной науки и техники |
description |
The results of investigations of a glow discharge in carbon dioxide by the method of optical emission spectroscopy are presented. Processes in negative glow, positive column and anode glow are considered in detail. In the
negative glow, bright radiation lines of both atoms and molecules and their ions are observed: O, O⁺
, CO, O₂, CO⁺
and molecular continuum. In the positive column, a weak continuum and emission lines of CO₂, CO, and O₂ molecules are seen. The emission lines of CO molecules dominate in the anode glow against the background of the continuum, and also lines of molecular and atomic oxygen are visible. Axial intensity distributions of a number of lines
are presented for the entire discharge gap between the cathode and the anode. |
format |
Article |
author |
Lisovskiy, V.A. Krol, H.H. Dudin, S.V. |
author_facet |
Lisovskiy, V.A. Krol, H.H. Dudin, S.V. |
author_sort |
Lisovskiy, V.A. |
title |
Investigation of DC glow discharge in CO₂ using optical emission spectroscopy |
title_short |
Investigation of DC glow discharge in CO₂ using optical emission spectroscopy |
title_full |
Investigation of DC glow discharge in CO₂ using optical emission spectroscopy |
title_fullStr |
Investigation of DC glow discharge in CO₂ using optical emission spectroscopy |
title_full_unstemmed |
Investigation of DC glow discharge in CO₂ using optical emission spectroscopy |
title_sort |
investigation of dc glow discharge in co₂ using optical emission spectroscopy |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2018 |
topic_facet |
Низкотемпературная плазма и плазменные технологии |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148832 |
citation_txt |
Investigation of dc glow discharge in CO₂ using optical emission spectroscopy / V.A. Lisovskiy, H.H. Krol, S.V. Dudin // Вопросы атомной науки и техники. — 2018. — № 6. — С. 206-209. — Бібліогр.: 29 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT lisovskiyva investigationofdcglowdischargeinco2usingopticalemissionspectroscopy AT krolhh investigationofdcglowdischargeinco2usingopticalemissionspectroscopy AT dudinsv investigationofdcglowdischargeinco2usingopticalemissionspectroscopy |
first_indexed |
2025-07-12T20:23:45Z |
last_indexed |
2025-07-12T20:23:45Z |
_version_ |
1837474071942529024 |
fulltext |
ISSN 1562-6016. ВАНТ. 2018. №6(118)
206 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2018, № 6. Series: Plasma Physics (118), p. 206-209.
INVESTIGATION OF DC GLOW DISCHARGE IN CO2 USING OPTICAL
EMISSION SPECTROSCOPY
V.A. Lisovskiy, H.H. Krol, S.V. Dudin
V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
E-mail: lisovskiy@yahoo.com
The results of investigations of a glow discharge in carbon dioxide by the method of optical emission spectros-
copy are presented. Processes in negative glow, positive column and anode glow are considered in detail. In the
negative glow, bright radiation lines of both atoms and molecules and their ions are observed: O, O+, CO, O2, CO+
and molecular continuum. In the positive column, a weak continuum and emission lines of CO2, CO, and O2 mole-
cules are seen. The emission lines of CO molecules dominate in the anode glow against the background of the con-
tinuum, and also lines of molecular and atomic oxygen are visible. Axial intensity distributions of a number of lines
are presented for the entire discharge gap between the cathode and the anode.
PACS: 52.80.Hc
INTRODUCTION
Direct current glow discharge in CO2 is widely used
for pumping carbon dioxide gas-discharge lasers [1]. In
recent years, there has been a growing interest in plasma
conversion of greenhouse gases (the main one of which
is CO2), to compounds such as methanol (CH3OH) or
synthesis gas (CO/H2), that are important raw materials
for the chemical industry or can be used as a fuel for
internal combustion engines [2-4]. In addition, CO2 is a
significant part of atmospheres on the planets and satel-
lites of the solar system. Therefore, it is of interest to
convert CO2 into oxygen and carbon monoxide CO,
which can be used as a rocket fuel [5-8]. Studies of dis-
charges in CO2 are also carried out because of their use
in various types of plasma reactors.
This paper is devoted to optical spectral analysis of
the structure of a glow discharge in carbon dioxide. Alt-
hough there are many studies in the literature on the
properties of glow discharge in various gases (see, for
example, [9-23]) and, in particular, in CO2 [24-27], but
usually its spectral studies were carried out in short
tubes, or the authors measured the radiation spectra of a
discharge at several specific points (cathode glow, nega-
tive glow or positive column) without plotting axial
profiles of the radiation line intensities along the entire
tube. The aim of this work was the experimental study
of the longitudinal structure of a glow discharge in car-
bon dioxide by means of optical emission spectroscopy.
1. EXPERIMENTAL
To investigate the glow discharge, a discharge
chamber was used schematically shown in Fig. 1. The
discharge was ignited in the horizontal part of T-shaped
tube made of glass. The anode could move along the
axis of the discharge tube (internal diameter 56 mm), its
diameter is 55 mm. In this paper, the distance between
the cathode and the anode was equal to 300 mm.
Carbon dioxide was fed into the vessel to the pres-
sure p = 1 Torr. The investigations were carried out at a
discharge current of 40 mA.
A compact Qmini spectrometer (RGB Lasersys-
teme) was used to measure the emission spectra of the
discharge plasma. For the analysis of molecular gas
spectra, we used the Pearse and Gaydon handbook [28].
2. EXPERIMENTAL RESULTS
Let us consider the emission spectra emerging from
the brightest parts of a glow discharge in carbon diox-
ide. In particular, we pay attention to the spectra for
negative glow (Fig. 2), a positive column (Fig. 3), and
anode glow (Fig. 4).
See Fig. 2 shows that the spectrum of negative glow
differs in the variety of radiation lines. It contains bright
lines of atomic oxygen: 777 nm (corresponds to electron
transition from the 5P level to the 5S0 level), 844 nm
(from 3P to 3S0) and 926 nm (from 5D0 to 5P). In the
visible part of the spectrum, the molecular continuum is
clearly pronounced, which extends from about 350 nm
to 800 nm. The reason for its appearance, apparently, is
the dissociation of electron-vibrationally excited CO2
molecules. Over the continuum background, bright lines
of CO molecules (Angstrom system, the transition B 1
A 1) and O2 (Schumann-Runge system, B 3
X 3) are observed. In the negative glow, the line of the
molecular ion CO+ (Comet-tail system, the transition
A 2 2to the ground state) with the wavelength of
427 nm is also well expressed, as well as lines of atomic
oxygen ions, for example, with the wavelength of
391 nm (the transition from 2D to 2P0). Such a large
number of emission lines of neutral molecules, atoms
and their ions indicate that a large number of fast elec-
trons enter the negative glow from the cathode layer,
capable not only of exciting or dissociating molecules of
Anode
V
R
A
Gas supply Pumping
DC generator
Cathode
Fig. 1. The scheme of the experimental setup
ISSN 1562-6016. ВАНТ. 2018. №6(118) 207
carbon dioxide, but even of ionization of the resulting
dissociation products.
Now consider the optical emission spectrum from
the positive column. It follows from Fig. 3 that the in-
tensities of the emission lines of the positive column are
small, about an order of magnitude lower than in the
negative glow. The spectrum consists of emission lines
of the CO molecules that dominate, as well as the weak-
er CO2 and O2 lines. The intensity of the lines of atomic
oxygen becomes comparable with the noise level of the
spectrometer. The molecular continuum became less
visible. Apparently, in the positive column, the dissocia-
tion of CO2 molecules is obstructed, as indicated by the
absence of emission lines for atomic oxygen.
The role of the positive column is that it transfers the
current from the cathode parts of the discharge (cathode
sheath, negative glow and dark Faraday space), to the
anode. Thus, in the positive column, such a value of the
reduced electric field E/p is established, at which the
production of electrons due to ionization compensates
for all their losses due to ambipolar exit to the walls of
the tube and attachment to gas molecules [14, 16]. Since
at the gas pressure of 1 Torr the ambipolar losses are
low and attaching to weakly electronegative oxygen
molecules is not significant, the high electron energies
are not needed to maintain a positive column in CO2.
Therefore, the electrons excite the existing molecules of
background CO2, as well as the molecules CO and O2,
entering the positive column from the negative glow.
Finally, under the conditions of our experiments, an-
odic glow is observed near the anode surface (photo in
Fig. 5). The emission spectrum in this case predomi-
nantly consists of lines of CO molecules, but bright
lines of O2 are visible as well, and even lines of atomic
oxygen disappearing in the positive column appear.
From this, as well as from the presence of intense mo-
lecular continuum, it can be concluded that in the anode
glow the electron energy is sufficient for the dissocia-
tion of CO2 molecules and, apparently, the dissociation
of O2 molecules can also occur.
The anode layer controls the flow of electrons to the
anode, equating the density of the chaotic current to its
surface to the current density in the external circuit. At
low pressures, when a directional and/or diffusion flux
of fast electrons accelerated in the cathode sheath reach-
es the anode, the voltage drop on the anode layer has a
negative sign, which leads to the repulsion of low-
energy electrons back into the plasma [10, 11, 15, 17].
However, under our conditions, fast electrons overcome
only a quarter of the gap between the electrodes. Almost
all the rest of the tube is filled with a positive column
that contacts the anode through the anode layer.
Now consider the axial profiles of several character-
istic lines. Fig. 5 shows the discharge photo and axial
profiles of the emission lines of CO2 (369 nm), CO (412
and 483 nm) and O2 (437 nm) molecules, as well as O
(777 nm) and CO+ (427 nm) molecular ions. The cath-
ode in the photo is located on the left, and the anode is
on the right. The thickness of the cathode layer under
our conditions does not exceed 2 mm. After the cathode
layer, the negative glow follows, next the dark Faraday
space, the positive column, the dark anode space, and
the thin anode glow film (about 1 mm thick).
Let's pay attention to the processes in the negative
glow. Electrons emitted from the cathode surface are
accelerated in a high electric field, and electronic ava-
lanches develop in the sheath. An intensive flow of fast
electrons enters the negative glow from the cathode
sheath. In the negative glow, the electric field strength is
very low, the acceleration of the electrons stops, there-
fore in this region of the discharge the electrons only
lose energy. The energy of a significant part of the fast
electrons leaving the cathode layer exceeds the energy
corresponding to the maxima of the molecular excita-
tion cross sections. These electrons lose energy effec-
tively in inelastic collisions, so the probability of the
300 400 500 600 700 800 900
10
-3
10
-2
10
-1
391
O
+
608
CO
561
CO
519
CO
483
CO
427
CO
+
412
CO
926
O
844
O
z = 3 mmIn
te
n
si
ty
,
n
W
/n
m
, nm
437
O
2
777
O
Fig. 2. Spectrum of radiation emitted from the nega-
tive glow (distance from the cathode is z = 3 mm)
300 400 500 600 700 800 900
10
-3
10
-2
437
O
2
369
CO
2 662
CO
608
CO
451
CO
In
te
n
si
ty
,
n
W
/n
m
, nm
z = 150 mm
561
CO
519
CO
483
CO
Fig. 3. Radiation spectrum emerging from the positive
column (distance from the cathode is z = 150 mm)
300 400 500 600 700 800 900
10
-3
10
-2
10
-1
662
CO
451
CO
In
te
n
si
ty
,
n
W
/n
m
, nm
z = 299 mm
608
CO
561
CO
519
CO
483
CO
412
CO
844
O
437
O
2
777
O
Fig. 4. Optical emission spectrum from the anode
glow (distance from the cathode is z = 299 mm)
208 ISSN 1562-6016. ВАНТ. 2018. №6(118)
excitation of molecules by such electrons increases, and
therefore the maxima are reached in the intensity pro-
files of the lines at some distance from the boundary of
the cathode sheath.
It can be seen from see Fig. 5 that over the whole
negative glow the intensities of all the lines are mono-
tonically decreasing (with equal rate for all the lines)
according to an exponential law. The length of the nega-
tive glow is equal to the distance that the fastest elec-
trons pass through the gas, coming from the cathode
surface and passing through the entire cathode sheath,
without experiencing a large number of inelastic colli-
sions. In the dark Faraday space, the intensities of all the
investigated emission lines continue to decrease until
they become comparable with the noise level of the
spectrometer. The energy of the electrons is insufficient
to accomplish ionizing collisions. The current transfer is
accomplished predominantly by the diffusion flux of
electrons that are fast in the negative glow, but are ran-
domized and lose a significant part of their energy to-
ward its end. These more energetic electrons, with fur-
ther distance from the cathode, are partially lost on the
walls of the tube. Therefore, starting from some distance
to the cathode, these electrons can not carry the dis-
charge current, the electric field strength increases, and
a positive column appears. Under our conditions, it was
almost homogeneous, but in its central part a brighter
narrow region formed. This may be a single striation,
which is usually observed at low gas pressures and low
discharge currents [19, 29].
A dark anode space appears between the positive
column and the anode glow, in which the minima are
observed on the axial profiles of the intensities of the
emission lines. The anode plays the role of the electron
collector, the space near it is depleted by fast electrons
that go to its surface. The depleted region glows weaker,
which we see as a dark space. In the anode glow, the
intensity of the CO lines becomes even higher than in
the negative glow. Here, the electrons are accelerated to
the anode surface in the positive anode voltage drop.
CONCLUSIONS
Thus, in the present work, a glow discharge in CO2
was studied by optical emission spectroscopy. The re-
sults are given for gas pressure of 1 Torr and discharge
current of 40 mA. Particular attention is paid to the pro-
cesses occurring in the negative glow, the positive col-
umn and the anode glow. It is shown that in the negative
glow bright emission lines of both atoms and molecules
and their ions are observed: atomic oxygen 777, 844 and
926 nm; atomic oxygen ions O+ (391 nm); bright lines
of CO (the Angstrom system) and O2 (Schumann-Runge
system); molecular ion CO+ (427 nm, Comet-tail sys-
tem). Also, the molecular continuum (350 to 800 nm) is
clearly pronounced. In the positive column, the lines of
ions and atoms disappear, against the background of a
weak continuum, only the emission of CO2, CO and O2
molecules is seen. In the anode glow the intensity of the
continuum, the molecular and atomic lines increase sig-
nificantly and may even exceed the corresponding in-
tensities in the negative glow. Axial intensity profiles of
a number of characteristic emission lines have been
constructed for the entire interval between the cathode
and the anode.
REFERENCES
1. C.E. Webb, J.D.C. Jones (Eds.). Handbook of Laser
Technology and Applications. Bristol and Philadelphia:
“IOP Publishing Ltd”, 2004, p. 1555.
2. L.M. Zhou et al. Nonequilibrium Plasma Reforming
of Greenhouse Gases to Synthesis Gas // Energy and
Fuels. 1998, v. 12, № 6, p. 1191-1199.
3. A. Indarto, J.-W. Choi, H. Lee, H.K. Song. Conver-
sion of CO2 by Gliding Arc Plasma // Environ. Eng. Sci.
2006, v. 23, №6, p. 1033-1043.
4. S. Paulussen, B. Verheyde, et al. Conversion of car-
bon dioxide to value-added chemicals in atmospheric
pressure dielectric barrier discharges // Plasma Sources
Sci. Technol. 2010, v. 19, p. 034015.
5. J.L. Fox. CO2
+ dissociative recombination: a source
of thermal and nonthermal C on Mars // J. Geophys.
Research A. 2004, v. 109, № 8, p. 08306.
6. V. Guerra, T. Silva, P. Ogloblina, et al. The case for
in situ resource utilisation for oxygen production on
Mars by nonequilibrium plasmas // Plasma Sources Sci.
Technol. 2017, v. 26, № 11, p. 11LT01.
7. G.A. Landis, D.L. Linne. Mars rocket vehicle using
in situ propellants // J. Spacecr. Rockets. 2001, v. 38,
p. 730-735.
8. J.J. Hartvigsen, S. Elangovan, D. Larsen, et al. Chal-
lenges of solid oxide electrolysis for production of fuel
and oxygen from Mars atmospheric CO2 // ECS Trans-
actions. 2015, v. 68, p. 3563-3583.
9. V.A. Lisovskiy, K.P. Artushenko, V.D. Yegorenkov.
Normal mode of dc discharge in argon, hydrogen and
oxygen // Problems of Atomic Science and Technology.
Ser. “Plasma Physics”. 2016, № 6, p. 223-226.
10. V.A. Lisovskiy, K.P. Artushenko, V.D. Yegoren-
kov. Inter-electrode distance effect on dc discharge
characteristics in nitrogen // Problems of Atomic Science
and Technology. Ser. “Plasma Physics”. 2015, № 4,
p. 202-205.
C A
0 50 100 150 200 250 300
10
-4
10
-3
10
-2
10
-1
In
te
n
si
ty
,
n
W
/n
m
z, mm
, nm
369 - CO
2
412 - CO
427 - CO
+
437 - O
2
483 - CO
777 - O
Fig. 5. Photo of the glow discharge and axial
profiles of intensity of different lines
ISSN 1562-6016. ВАНТ. 2018. №6(118) 209
11. V.A. Lisovskiy, K.P. Artushenko, V.D. Yegoren-
kov. Influence of the inter-electrode gap on the cathode
sheath characteristics // Physics of Plasmas. 2017, v. 24,
№ 5, p. 053501.
12. V. Lisovskiy, V. Yegorenkov. Validating the colli-
sion-dominated Child–Langmuir law for a dc discharge
cathode sheath in an undergraduate laboratory // Eur. J.
Phys. 2009, v.30, № 6, p. 1345.
13. V.A. Lisovskiy, E.P. Artushenko, V.D. Yegorenkov.
Calculating reduced electric field in diffusion regime of
dc discharge positive column // Problems of atomic sci-
ence and technology. Ser. “Plasma Physics”. 2015, №
1, p. 205.
14. V.A. Lisovskiy, K.P. Artushenko, et al. Reduced
electric field in the positive column of the glow dis-
charge in argon // Vacuum. 2015, v. 122, p. 75-81.
15. V.A. Lisovskiy, V.A. Derevianko, V.D. Yegoren-
kov. The Child-Langmuir collision laws for the cathode
sheath of glow discharge in nitrogen // Vacuum. 2014,
v. 103, p. 49-56.
16. V.A. Lisovskiy, E.P. Artushenko, V.D. Yegorenkov.
Simple model of reduced electric field in ambipolar
regime of dc discharge positive column in hydrogen // J.
Plasma Physics. 2015, v. 81, p. 905810312.
17. V.A. Lisovskiy, S.D. Yakovin. Experimental Study
of a Low-Pressure Glow Discharge in Air in Large-
Diameter Discharge Tubes // Plasma Physics Reports.
2000, v. 26, № 12, p. 1066-1075.
18. E.A. Bogdanov et al. Influence of the transverse
dimension on the structure and properties of dc glow
discharges // Phys. Plasmas. 2010, v. 17, p. 103502.
19. V.A. Lisovskiy, V.A. Koval, E.P. Artushenko,
V.D. Yegorenkov. Validating the Goldstein–Wehner
law for the stratified positive column of dc discharge in
an undergraduate laboratory // Eur. J. Phys. 2012, v. 33,
№ 6, p. 1537-1545.
20. A. Engel et al. Radial coherence of the normal glow
discharge // Phys. Lett. A. 1972, v. 42, p. 191-192.
21. V.A. Lisovskiy, S.D. Yakovin. Cathode Layer Char-
acteristics of a Low-Pressure Glow Discharge in Argon
and Nitrogen // Technical Physics Letters. 2000, v. 26,
№ 10, p. 891-893.
22. V.A. Lisovskiy, E.P. Artushenko, V.D. Yegorenkov.
Applicability of Child-Langmuir collision laws for de-
scribing a dc cathode sheath in N2O // J. Plasma Phys-
ics. 2014, v. 80, p. 319-327.
23. G. Cicala et al. Study of positive column of glow
discharge in nitrogen by optical emission spectroscopy
and numerical simulation // Plasma Sourses Sci. Tech-
nol. 2009, v. 18, № 2, p. 025032.
24. V.A. Lisovskiy, H.H. Krol, R.O. Osmayev, et al.
Child-Langmuir Law for Cathode Sheath of Glow Dis-
charge in CO2 // Problems of Atomic Science and Tech-
nology. Ser. “Plasma Physics”. 2017, № 1, p. 140-143.
25. P. Bayley et al. Cathode region of a discharge in
CO2 // Phys. Rev. A. 1986, v. 34, № 1, p. 360-371.
26. E.F. Mendez-Martinez et al. Langmuir Probe and
Optical Emission Spectroscopy Studies of Low-Pressure
Gas Mixture of CO2 and N2 // Plasma Science and
Technology. Ser. “Plasma Physics”. 2010, v.12, p. 314-
319.
27. R. Castell et al. Glow Discharge Plasma Properties
of Gases of Environmental Interest // Brazilian J. Phys.
2004, v. 34, № 4B, p. 1734–1737.
28. R.W.B. Pearse, A.G. Gaydon. The identification of
molecular spectra. London: “Chapman”, 1950.
29. V.A. Lisovskiy, V.A. Derevianko, V.D. Yegoren-
kov, Positive column contraction of the glow discharge
in nitrogen // Problems of atomic science and technolo-
gy. Ser. “Plasma Physics”. 2017, № 1, p. 144-147.
Article received 12.09.2018
ИССЛЕДОВАНИЕ ТЛЕЮЩЕГО РАЗРЯДА В CO2 МЕТОДОМ ОПТИЧЕСКОЙ ЭМИССИОННОЙ
СПЕКТРОСКОПИИ
В.А. Лисовский, Г.Г. Кроль, С.В. Дудин
Приведены результаты исследований тлеющего разряда в углекислом газе методом оптической эмисси-
онной спектроскопии. Рассмотрены подробно процессы в отрицательном свечении, положительном столбе и
анодном свечении. В отрицательном свечении наблюдаются яркие линии излучения как атомов, так и моле-
кул и их ионов: O, O+, СО, О2, СО+, и молекулярный континуум. В положительном столбе видны слабый
континуум и линии излучения молекул CO2, CO и O2. В анодном свечении на фоне континуума доминируют
линии излучения молекул CO, а также видны линии O2 и атомарного кислорода. Представлены осевые про-
фили интенсивностей ряда линий для всего разрядного промежутка между катодом и анодом.
ДОСЛІДЖЕННЯ ТЛІЮЧОГО РОЗРЯДУ В CO2 МЕТОДОМ ОПТИЧНОЇ ЕМІСІЙНОЇ
СПЕКТРОСКОПІЇ
В.О. Лісовський, Г.Г. Кроль, С.В. Дудін
Наведені результати досліджень тліючого розряду у вуглекислому газі методом оптичної емісійної спек-
троскопії. Розглянуто докладно процеси в негативному світінні, позитивному стовпі і анодному світінні. У
негативному світінні спостерігаються яскраві лінії випромінювання як атомів, так і молекул і їх іонів: O, O+,
СО, О2, СО+, та молекулярний континуум. У позитивному стовпі видно слабкий континуум і лінії випромі-
нювання молекул CO2, CO та O2. В анодному світінні на фоні континууму домінують лінії випромінювання
молекул CO, а також видні лінії O2 і атомарного кисню. Наведені осьові профілі інтенсивностей ряду ліній
для всього розрядного проміжку між катодом та анодом.
|