Limits of applicability of the weakly relativistic approximation in the theory of plasma waves
The more general weakly-relativistic plasma dispersion functions are introduced and discussed in the frame of the fully relativistic approach for the theory of plasma waves.
Gespeichert in:
Datum: | 2018 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2018
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/148841 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Limits of applicability of the weakly relativistic approximation in the theory of plasma waves / S.S. Pavlov, F. Castejón // Вопросы атомной науки и техники. — 2018. — № 6. — С. 83-85. — Бібліогр.: 5 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148841 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1488412019-02-19T01:27:36Z Limits of applicability of the weakly relativistic approximation in the theory of plasma waves Pavlov, S.S. Castejón, F. Фундаментальная физика плазмы The more general weakly-relativistic plasma dispersion functions are introduced and discussed in the frame of the fully relativistic approach for the theory of plasma waves. Більш загальні слаборелятивістські функції вводяться і обговорюються в рамках точного повністю релятивістського підходу в теорії плазмових хвиль. Более общие слаборелятивистские функции вводятся и обсуждаются в рамках точного полностью релятивистского подхода в теории плазменных волн. 2018 Article Limits of applicability of the weakly relativistic approximation in the theory of plasma waves / S.S. Pavlov, F. Castejón // Вопросы атомной науки и техники. — 2018. — № 6. — С. 83-85. — Бібліогр.: 5 назв. — англ. 1562-6016 PACS: 52.27.Ny http://dspace.nbuv.gov.ua/handle/123456789/148841 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Фундаментальная физика плазмы Фундаментальная физика плазмы |
spellingShingle |
Фундаментальная физика плазмы Фундаментальная физика плазмы Pavlov, S.S. Castejón, F. Limits of applicability of the weakly relativistic approximation in the theory of plasma waves Вопросы атомной науки и техники |
description |
The more general weakly-relativistic plasma dispersion functions are introduced and discussed in the frame of
the fully relativistic approach for the theory of plasma waves. |
format |
Article |
author |
Pavlov, S.S. Castejón, F. |
author_facet |
Pavlov, S.S. Castejón, F. |
author_sort |
Pavlov, S.S. |
title |
Limits of applicability of the weakly relativistic approximation in the theory of plasma waves |
title_short |
Limits of applicability of the weakly relativistic approximation in the theory of plasma waves |
title_full |
Limits of applicability of the weakly relativistic approximation in the theory of plasma waves |
title_fullStr |
Limits of applicability of the weakly relativistic approximation in the theory of plasma waves |
title_full_unstemmed |
Limits of applicability of the weakly relativistic approximation in the theory of plasma waves |
title_sort |
limits of applicability of the weakly relativistic approximation in the theory of plasma waves |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2018 |
topic_facet |
Фундаментальная физика плазмы |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148841 |
citation_txt |
Limits of applicability of the weakly relativistic approximation in the theory of plasma waves / S.S. Pavlov, F. Castejón // Вопросы атомной науки и техники. — 2018. — № 6. — С. 83-85. — Бібліогр.: 5 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT pavlovss limitsofapplicabilityoftheweaklyrelativisticapproximationinthetheoryofplasmawaves AT castejonf limitsofapplicabilityoftheweaklyrelativisticapproximationinthetheoryofplasmawaves |
first_indexed |
2025-07-12T20:25:28Z |
last_indexed |
2025-07-12T20:25:28Z |
_version_ |
1837474185019916288 |
fulltext |
ISSN 1562-6016. ВАНТ. 2018. №6(118)
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2018, № 6. Series: Plasma Physics (118), p. 83-85. 83
LIMITS OF APPLICABILITY OF THE WEAKLY RELATIVISTIC
APPROXIMATION IN THE THEORY OF PLASMA WAVES
S.S. Pavlov1, F. Castejón2
1National Science Center “Kharkov Institute of Physics and Technology”,
Institute of Plasma Physics, Kharkiv, Ukraine;
2Laboratorio Nacional de Fusión, CIEMAT, Madrid, Spain
The more general weakly-relativistic plasma dispersion functions are introduced and discussed in the frame of
the fully relativistic approach for the theory of plasma waves.
PACS: 52.27.Ny
INTRODUCTION
Presently, the analytical and numerical investigation
of the excitation, propagation and absorption of electron
cyclotron waves in thermonuclear plasma is performed
as a rule in the frame of the weakly relativistic
approximation, when longitudinal (to the magnetic field
line) spatial dispersion of plasma is expressed in the
terms of the weakly relativistic plasma dispersion
functions (PDFs)
0
2
, 2/1
2/1
2/12/3
azu
eauIu
du
a
e
azF
ua
n
n
nn
,
( ...2,1,0 n ), (1)
where n is the number of electron cyclotron harmonic,
22
IINa , 2)/( TeVc , c is speed of light in the
vacuum,
TeV is the thermal velocity of electrons,
IIN is
the longitudinal refractive index of plasma, )(2/1 xIn
is
modified Bessel function of the half-integer order [1].
Applicability limits of such approximation is not clear
enough, since they could be defined exactly only on the
basis of somewhat limit transitions in the frame of the
exact fully relativistic approach, when plasma dielectric
tensor elements are expressed in the terms of the
Cauchy type integrals, named by the exact relativistic or
fully relativistic PDFs [2]: for the case 10 IIN
21
2
)2(
)(
,,
2
23 n
aa
n
aeK
e
azZ
0
21
21
*
2 )/1)2/(()/1)2/((
azu
dueI u
n
n
uuauu
,
(2)
where )1/(1 2
IIN , )(2 xK is the MacDonald function
of the 2nd order, )N11( 2
II a , )(21 xIn
is modified
Bessel function with half-integer index, in the contrary
case 1IIN
2123
)(
,,
22
)2exp(
nn
aK
azZ
a
zt
dttaK ttatta n
n
exp2 )2(
2
)2(
2 21
21
21
,
( ...2,1,0 n ), (3)
where )(2/1 xKn
is MacDonald function with half-
integer index
The main scope of present work is the
definition of applicability limits of the weakly
relativistic approximation from fully relativistic PDFs
(2) and (3) on the base limit transition .
1. THE WEAKLY RELATIVISTIC PDFs
WITHOUT TAKING INTO ACCOUNT THE
TRANSVERSE SPATIAL DISPERSION
From comparison of the weakly relativistic PDFs (1)
and fully relativistic ones (2) and taking into account the
asymptotic relation )2(~)(2
eK when [3]
it is easy to see, that azFazZ nn ,,, 2/323 when
and аа . The first limit transition
corresponds to the transition into the cold plasma
approximation, the second one corresponds to the
transition into the nearly perpendicular (to the magnetic
field) wave propagation case ( 12 IIN ), when
аNа 2/2
II and 1 .
Here it is necessary specially to note that the weakly
relativistic PDFs (1) and fully relativistic ones (2) are
fair only for the case 1IIN . In the contrary case 1IIN
the exact relativistic PDFs are expressed by the Cauchy
integrals, defined at the real axis in the form (3).
Performing in the definition (3) the limit transition
and making the change )1/(1 2
IIN we will
obtain the weakly relativistic PDFs of the new form,
corresponding to the condition 12 IIN [2].
2123
2
))1/(2exp(
)1/(1,
nn
a
Na
NazF
2
II2
II
zt
dtKta NtNtaan
n
)1/()1/(2 exp21
21 2
II
2
II .
(4)
84 ISSN 1562-6016. ВАНТ. 2018. №6(118)
Now making in the definition (2) only the limit
transition we will obtain the weakly relativistic
PDFs also of the new form, corresponding to the
condition 12 IIN .
2123
)1(
2
)21/()2(
, n
Naa
n
aN
e
azZ
II
II
0
*
1
1
21 2
221
21
2
zau
dueNu
N
a
INu u
n
n
II
II
II
. (5)
It is easy to see that the form (4) goes to the form (1)
when 0IIN (perpendicular wave propagation) and
аа (almost perpendicular wave propagation). It is
easy to see, that 2
IINaа 112 and consequently
for а is true condition ааa 2 when 10 IIN .
Methods of evaluation of PDFs (4) and (5) are given
in [2].
2. ACCOUNT OF THE TRANSVERSE
SPATIAL DISPERSION
One-dimensional integral forms for fully relativistic
plasma dielectric tensor, taking into account the
transverse spatial dispersion and longitudinal one for the
case 12 IIN , were given in [4]
1
1
22
11 )(Im
2
n
Kua
n
Jduez
n
, (6)
nn
Kua
n
JJeduzi
n 2
1
1
12 )(Im
,
222
1
1
22 )(Im
1
nn
Kua
n
JJeduz
,
22
1
1
13 )(Im n
Kua
n
JeuduzK
n
,
nn
Kua
n
JJeuduzKi 2
1
1
23 )(Im
1
,
,)(2Im 22
1
1
22
33
n
Kua
n
JeduuzK
)/1(2
)(
za
Keez z
,
2)(2
2
0
K
ep
, /)1(2 2uK ,
.
),,(Im1
),,(Re
zt
dtta
Pza
ij
ijij
After the weakly relativistic limit transition in
the integral forms (6) one will have functions,
generating elements of plasma dielectric tensor for the
weakly relativistic case with taking exactly into account
the transverse and longitudinal spatial dispersion of
plasma and suitable for numerical evaluations for
arbitrary ECRF waves in the weakly relativistic plasma.
The alternative case 1IIN was studied in [5], where
were obtained plasma dielectric tensor elements for
fully relativistic plasma with taking into account the
transverse spatial dispersion and longitudinal one
1
2
11
2
2
Im n
n
JdueK
uKan
, (7)
nn
n
JJeduKi
uKan 2
1
12Im
,
22
1
22
21
Im n
n
JeduK
uKa
,
,
Im
2
1
13
2
)/1(
2
n
n
Je
duK
uKa
zauK
n
,
Im
2
)/1(
2
1
23
nn
n
JJe
duKi
uKa
zauK
,
2Im
2
1
33
2
2
)/1(
n
n
Je
duK
uKa
zauK
.
),,(Im1
),,(Re
zt
dtta
Pza
ij
ijij
After the same weakly relativistic transition in
formulae (7), one will obtain the functions, generating
plasma dielectric tensor elements in the weakly
relativistic case, taking into account the perpendicular
and longitudinal dispersion of plasma and suitable for
numerical investigation of fast and slow plasma EC
waves in the thermonuclear plasma.
CONCLUSIONS
The next main conclusions can be extracted from this
work:
1. In the frame of fully relativistic approach by means of
limit transition were derived the two sets of the
weakly relativistic PDFs.
ISSN 1562-6016. ВАНТ. 2018. №6(118) 85
2. One PDFs generalize Shkarofsky functions from
quasi-perpendicular case into much more wide case
10 IIN .
3. Another PDFs give the weakly relativistic PDFs for
the case 1IIN .
4. Method evaluating the weakly relativistic plasma
dielectric tensor elements for arbitrary wave numbers or
with taking into account transverse and longitudinal
spatial dispersion of plasma is given as well.
REFERENCES
1. M. Brambilla. Kinetic theory of plasma waves,
homogeneous plasmas. Oxford University Press, 1998.
2. F. Castejon, S.S. Pavlov // Physics of Plasmas. 2006,
v. 13, p. 072105.
3. Handbook of mathematical functions / Edited by
M. Abramowitz and A. Stegun, 1964.
4. S.S. Pavlov. Exact relativistic maxwellian magnetized
plasma dielectric tensor evaluation for arbitrary wave
numbers // Problems of Atomic Science and Technology.
Series “Plasma Physics” (22). 2016, № 6(106), p. 92.
5. S.S. Pavlov, F. Castejon. Fully relativistic approach
to the theory of plasma waves / The work has been
carried out within the framework of the EUROfusion
Consortium and has received funding from the Euratom
research and training programe 2014-2018 under grant
agreement № 633053. This work has been also funded
by the Spanish Ministerio de Economia y
Competitividad under Project ENE2014-52174-P.
Article received 10.10.2018
.
ПРЕДЕЛЫ ПРИМЕНИМОСТИ СЛАБОРЕЛЯТИВИСТСКОГО ПРИБЛИЖЕНИЯ В ТЕОРИИ
ПЛАЗМЕННЫХ ВОЛН
С.С. Павлов, F. Castejón
Более общие слаборелятивистские функции вводятся и обсуждаются в рамках точного полностью
релятивистского подхода в теории плазменных волн.
МЕЖІ ЗАСТОСУВАННЯ СЛАБОРЕЛЯТИВІСТСЬКОГО НАБЛИЖЕННЯ В ТЕОРІЇ
ПЛАЗМОВИХ ХВИЛЬ
С.С. Павлов, F. Castejón
Більш загальні слаборелятивістські функції вводяться і обговорюються в рамках точного повністю
релятивістського підходу в теорії плазмових хвиль.
|