Hydrogen injector based on penning discharge with metal hydride cathode
The paper presents the results of the investigation of a neutral-hydrogen pulse injector based on Penning discharge with a metal hydride hollow cathode. The source of chemically pure hydrogen is a getter alloy Zr₅₀V₅₀ made in the form of a hollow cathode. The main release of hydrogen into the gas p...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2018
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/148843 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Hydrogen injector based on penning discharge with metal hydride cathode / I.N. Sereda, Ya.O. Hrechko, A.F. Tseluyko, D.L. Ryabchikov // Вопросы атомной науки и техники. — 2018. — № 6. — С. 222-224. — Бібліогр.: 4 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-148843 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1488432019-02-19T01:29:39Z Hydrogen injector based on penning discharge with metal hydride cathode Sereda, I.N. Hrechko, Ya.O. Tseluyko, A.F. Ryabchikov, D.L. Низкотемпературная плазма и плазменные технологии The paper presents the results of the investigation of a neutral-hydrogen pulse injector based on Penning discharge with a metal hydride hollow cathode. The source of chemically pure hydrogen is a getter alloy Zr₅₀V₅₀ made in the form of a hollow cathode. The main release of hydrogen into the gas phase occurs under the influence of discharge current (about 20 A) in a short period of time (several hundred microseconds), during the operation in the high-current discharge regime. It is shown, that the propagation velocity of the gas front depends on the discharge current and is determined by the hydrogen temperature. The maximum velocity of gas front propagation is obtained at the level of 5·10⁵ cm/s. The amount of hydrogen desorbed per 400-μc pulse isabout 1.5·10⁻³ cm³ under normal conditions and the energy is expended on the level of 0.34 J. Представлено результати роботи імпульсного інжектора нейтрального водню на основі розряду Пенінга з металогідридним порожнистим катодом. Джерелом хімічно чистого водню є гетерний сплав Zr₅₀V₅₀, який виготовлено у вигляді порожнистого катода. Основне виділення водню в газову фазу відбувається під впливом розрядного струму (близько 20 А) за короткий проміжок часу, близько декількох сотень мікросекунд, протягом роботи потужнострумового режиму розряду. Показано, що швидкість поширення газового фронту залежить від розрядного струму і визначається температурою водню. Максимальне значення швидкості поширення газового фронту отримано на рівні 5·10⁵ см/с при кількості водню, що десорбується за імпульс тривалістю 400 мкс близько 1,5·10⁻³ см³ при нормальних умовах і витраченій енергії 0,34 Дж. Представлены результаты работы импульсного инжектора нейтрального водорода на основе разряда Пеннинга с металлогидридным полым катодом. Источником химически чистого водорода служит гетерный сплав Zr₅₀V₅₀, изготовленный в виде полого катода. Основное выделение водорода в газовую фазу происходит под воздействием разрядного тока (порядка 20 А) за короткий промежуток времени, порядка нескольких сотен микросекунд, в течение работы сильноточного режима разряда. Показано, что скорость распространения газового фронта зависит от разрядного тока и определяется температурой поверхности металлогидридного катода. Максимальное значение скорости распространения газового фронта получено на уровне 5·10⁵ см/с при количестве водорода, десорбированного за импульс длительностью 400 мкс порядка 1,5·10⁻³ см³ при нормальных условиях и затраченной энергии 0.34 Дж. 2018 Article Hydrogen injector based on penning discharge with metal hydride cathode / I.N. Sereda, Ya.O. Hrechko, A.F. Tseluyko, D.L. Ryabchikov // Вопросы атомной науки и техники. — 2018. — № 6. — С. 222-224. — Бібліогр.: 4 назв. — англ. 1562-6016 PACS: 52.80.Sm http://dspace.nbuv.gov.ua/handle/123456789/148843 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии |
spellingShingle |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии Sereda, I.N. Hrechko, Ya.O. Tseluyko, A.F. Ryabchikov, D.L. Hydrogen injector based on penning discharge with metal hydride cathode Вопросы атомной науки и техники |
description |
The paper presents the results of the investigation of a neutral-hydrogen pulse injector based on Penning discharge with a metal hydride hollow cathode. The source of chemically pure hydrogen is a getter alloy Zr₅₀V₅₀ made
in the form of a hollow cathode. The main release of hydrogen into the gas phase occurs under the influence of discharge current (about 20 A) in a short period of time (several hundred microseconds), during the operation in the
high-current discharge regime. It is shown, that the propagation velocity of the gas front depends on the discharge
current and is determined by the hydrogen temperature. The maximum velocity of gas front propagation is obtained
at the level of 5·10⁵
cm/s. The amount of hydrogen desorbed per 400-μc pulse isabout 1.5·10⁻³
cm³ under normal
conditions and the energy is expended on the level of 0.34 J. |
format |
Article |
author |
Sereda, I.N. Hrechko, Ya.O. Tseluyko, A.F. Ryabchikov, D.L. |
author_facet |
Sereda, I.N. Hrechko, Ya.O. Tseluyko, A.F. Ryabchikov, D.L. |
author_sort |
Sereda, I.N. |
title |
Hydrogen injector based on penning discharge with metal hydride cathode |
title_short |
Hydrogen injector based on penning discharge with metal hydride cathode |
title_full |
Hydrogen injector based on penning discharge with metal hydride cathode |
title_fullStr |
Hydrogen injector based on penning discharge with metal hydride cathode |
title_full_unstemmed |
Hydrogen injector based on penning discharge with metal hydride cathode |
title_sort |
hydrogen injector based on penning discharge with metal hydride cathode |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2018 |
topic_facet |
Низкотемпературная плазма и плазменные технологии |
url |
http://dspace.nbuv.gov.ua/handle/123456789/148843 |
citation_txt |
Hydrogen injector based on penning discharge with metal hydride cathode / I.N. Sereda, Ya.O. Hrechko, A.F. Tseluyko, D.L. Ryabchikov // Вопросы атомной науки и техники. — 2018. — № 6. — С. 222-224. — Бібліогр.: 4 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT seredain hydrogeninjectorbasedonpenningdischargewithmetalhydridecathode AT hrechkoyao hydrogeninjectorbasedonpenningdischargewithmetalhydridecathode AT tseluykoaf hydrogeninjectorbasedonpenningdischargewithmetalhydridecathode AT ryabchikovdl hydrogeninjectorbasedonpenningdischargewithmetalhydridecathode |
first_indexed |
2025-07-12T20:25:52Z |
last_indexed |
2025-07-12T20:25:52Z |
_version_ |
1837474212830248960 |
fulltext |
ISSN 1562-6016. ВАНТ. 2018. №6(118)
222 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2018, № 6. Series: Plasma Physics (118), p. 222-224.
HYDROGEN INJECTOR BASED ON PENNING DISCHARGE WITH
METAL HYDRIDE CATHODE
I.N. Sereda, Ya.O. Hrechko, A.F. Tseluyko, D.L. Ryabchikov
V.N.Karazin Kharkiv National University, Kharkiv, Ukraine
E-mail: igorsereda@karazin.ua
The paper presents the results of the investigation of a neutral-hydrogen pulse injector based on Penning dis-
charge with a metal hydride hollow cathode. The source of chemically pure hydrogen is a getter alloy Zr50V50 made
in the form of a hollow cathode. The main release of hydrogen into the gas phase occurs under the influence of dis-
charge current (about 20 A) in a short period of time (several hundred microseconds), during the operation in the
high-current discharge regime. It is shown, that the propagation velocity of the gas front depends on the discharge
current and is determined by the hydrogen temperature. The maximum velocity of gas front propagation is obtained
at the level of 5·105 cm/s. The amount of hydrogen desorbed per 400-μc pulse isabout 1.5·10-3 cm3 under normal
conditions and the energy is expended on the level of 0.34 J.
PACS: 52.80.Sm
INTRODUCTION
An important part of the sources of ionized and neu-
tral particles, as well as devices that perform gas supply
of toroidal traps are pulsed gas injectors [1]. There are
two types of injectors: piezoelectric and electro-
magnetic ones [1, 2]. The first are characterized by low
power consumption and high response rate with a char-
acteristic time of the gas pulse at a level of hundreds of
microseconds. However, due to the small stroke of the
piezoelectric element and the small flow cross section,
they are not able to provide a large flow of gas [2].
Electromagnetic injectors, on the contrary, do not have a
high speed, but they provide large gas flows [1, 2].
For devices operating on hydrogen or its isotopes, it
is convenient to use getter injectors as a source of hy-
drogen, which are comparable or superior to piezoelec-
tric injectors by fast-action, and can compete with elec-
tromagnetic ones in terms of gas flow. To their short-
comings can be attributed the need for periodic rather
laborious regeneration and the possibility of working
only with one type of gas – hydrogen. However, the
undeniable advantages of getter injectors stimulate the
development and improvement of them.
The main element of the getter injectors is a storage
based on reversible metal hydride alloys, for example,
zirconium and vanadium. These alloys have a sufficient-
ly large hydrogen capacity and allow multiple recharg-
ing. Slow injection of hydrogen is due to the smooth
heating of the entire accumulator, and fast – by the re-
lease of pulsed energy on its surface [3]. The magnitude
of the flow of hydrogen is mainly determined by the
size of the surface.
For pulse energy contribution, both electron and ion
beams are suitable. In the second case, applying the
Penning discharge one can form ion beams on signifi-
cant surfaces without using thermal cathodes and other
power-consuming elements. In addition, the yield of
hydrogen here will be determined not only by the ther-
mal effects of hydride phases decomposition, but also
by ion stimulated processes [3].
Consideringthe possibility of the injector operating
at high vacuum, the Penning discharge with its wide
working pressure range fits best. Additional features of
this injector are the ease of implementation and opera-
tion. In addition to the neutral hydrogen flow, it is also
possible to form a hydrogen plasma flux. The latter is
important for cathode-transformers of quasi-stationary
plasma accelerators [4].
When designing pulse getter hydrogen injectors, it is
important to know a number of fundamental parameters:
the amount of desorbed hydrogen from a surface unit,
the specific energy input, and the start time of the dis-
charge.
The purpose of this paper is to investigate the possi-
bility of using a Penning pulse discharge with a metal
hydride cathode as a neutral hydrogen pulse injector.
1. EXPERIMENTAL SETUP
Fig. 1 shows the scheme of the metal hydride hydro-
gen injector based on the Penning discharge. To en-
hance the discharge current, the metal hydride desorp-
tion element is designed as a hollow cathode.
The Penning cell is formed by two disk cathodes C1
and C2 made of magnetically conductive steel and a
tube-like anode A. A longitudinal magnetic field of
500 Oe is created by two annular permanent magnets M.
The sealing is carried out by a branch pipe W, which
ends with rubber nipples seals in cathode slots. The an-
ode A and the branch pipe W are made of non-magnetic
stainless steel.
In the central region of the cathode C2 there are 7
apertures 4 mm in diameter for gas outlet. Through the
same apertures, the pumping of the discharge gap is
performed. In the center of the cathode C1 in the branch
pipe there is a metal hydride hollow cathode MHC in
the form of a tube 12 mm long with external and internal
diameters of 8 and 3 mm, respectively. The MHC cath-
ode is made by pressing hydrogen-saturated powder of
Zr50V50 alloy with copper binder. The initial hydrogen
saturation degree was ~ 500 cm3 under normal condi-
tions.
A voltage pulse with amplitude up to + 4 kV was sup-
plied to the cell anode from a capacitor C0 of 1.5 μF
ISSN 1562-6016. ВАНТ. 2018. №6(118) 223
through a controlled switch S (thyratron TGI-400/16)
and a ballast resistance Rb = 190 Ω. The discharge volt-
age Vd was measured by a balanced voltage divider, and
the current id – by the Rogowski coil. In the experiments
in order to eliminate the formation of an electron of the
cathodes MHC, C1 and C2 was the same.
beam by the hollow cathode with following gas ioniza-
tion, the potential.
Fig. 1. Metal hydride hydrogen injector with a layout of pressure sensors
To study the dynamics of neutral gas propagation,
the injector was docked to a vacuum chamber through a
glass tube GT 40 cm long and 5.6 cm in diameter. With-
in the tube there were miniature ionization pressure sen-
sors P1 and P2 at the distance of 15 and 25 cm from the
injector. The sensors had a spiral filament cathode, a
cylindrical anode and they operated on the principle of
measuring the current in the cathode circuit. The emis-
sion current was 1 mA, the supplied voltage was 50 V.
To reduce interference, the sensors used battery power.
The dynamics of the pressure in the chamber was
investigated by the signal from PMI-2 sensor.
2. RESULTS AND DISCUSSION
The operation of metal hydride hydrogen injector
based on Penning discharge is illustrated by the oscillo-
gramsin Fig. 2 Voltage (a – general view, b – increased
sensitivity) and current (c ‒ oscillograms are clearly
show two discharge stages: high-voltage
(100 t 200 μs) and high-current (200 t 480 μs).
In the high-current stage, the discharge voltage (b) lies
in the range 50...120 V, and this indicates that there is an
arc discharge.
The dynamic of particle concentration along the
glass tube GT is illustrated in (see Fig. 2,d), where oscil-
lograms of the current of two ionization pressure sen-
sors are shown. When the voltage is applied to the injec-
tor, the current of both sensors slightly increases (close
one by 8 %, far one by 2 %) and remains practically
constant for ~ 70 μs. This current, apparently, is due to
ion beam, which is formed in Penning discharge. (The
arrival time of hydrogen ions to the sensors
is ~ 0.2 ... 0.3 μs. There is practical synchronism in the
currents).
At the final stage of the high-voltage discharge stage
(170 t 200 μs), the current is increased to 20 % at
close sensor, and after 20 μs delay on the far one. Here,
apparently, an intensive ion-stimulated desorption of
hydrogen from the metal hydride surface begins.
An even greater (up to 70 %) increase in the sensor
current is observed in the high-current (arc) discharge
stage. The thermal mechanisms of hydrogen desorption
are included in the arc due to decomposition of hydride
phases.
Fig. 2. The dynamics of the voltage (a, b) and discharge
current (c), as well as the relative change in the current
of the pressure sensors (d)
100µ 200µ 300µ 400µ 500µ
0
1
2
3
4
V
d
, kV
t, sec
100µ 200µ 300µ 400µ 500µ
0
10
20
i
d
, A
t, sec
100µ 200µ 300µ 400µ 500µ
1.0
1.2
1.4
1.6
P
1
P
2
P, a.u.
t, sec
100µ 200µ 300µ 400µ 500µ
0.0
0.1
0.2
V
d
, kV
t, sec
b
c
d
t = 20μsec
a
l1 l2
C0
+V0
S
Vd
id B B
A
MHC
C2
M M
P1 P2
GT
C1
B
Rb
W
t, s
t, s
t, s
t, s
224 ISSN 1562-6016. ВАНТ. 2018. №6(118)
The gas temperature in the discharge can be judged
from the propagation velocity of the pressure front. Cal-
culated (see Fig. 2,d) from the current delay in the pres-
sure sensors, the front velocity was ~ 5·105 cm/s, which
corresponds to a hydrogen temperature of ~ 2500 K.
The duration of the high-voltage stage depended on
the capacitor charge voltage and in our case was
100...500 μs at voltages of 2.5...4.0 kV. The energy re-
leased in the discharge at this stage was ~ 0.04 J at an
average power of ~ 400 W.
The duration of the high-current stage varied in the
range of 480...580 μs. The energy released in the dis-
charge at this stage was ~ 0.3 J at an average power
of ~ 1 kW.
Fig. 3 shows the velocity of gas front propagation
during the discharge operation in high-current stage. It
can be seen that theincrease in the power loaded to the
metal hydride cathode leads to a sufficient increase in
the velocity. The same figure shows the time depend-
ence of the discharge transition into a high-current
stage. One could approximate it with linear.
2.50 2.75 3.00 3.25 3.50 3.75 4.00
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
t
,
se
c
v*
1
0
5
,
cm
/
s
ec
U
d
, kV
100
150
200
250
300
350
400
450
Fig. 3. Dependence of the gas front propagation veloci-
ty on the charge voltage and the transition time of the
discharge to the high-current stage
To determine the amount of hydrogen released for
the pulse, a PMI-2 manometer was used, which was
installed at the outlet of the vacuum tube.The amount of
desorbed hydrogen per pulse was calculated by measur-
ing the relative change in pressure in the vacuum cham-
ber with oscilloscope. Estimations have shown that ap-
proximately 1.5 · 10-3 cm3 of hydrogen under normal
conditions is desorbed during the pulse.
CONCLUSIONS
Thus, it has been shown the possibility of creating a
neutral hydrogen injector, where the amount and the
propagation velocity of the hydrogen front can be regu-
lated by a discharge current of a different duration. The
proposed design is easy to manufacture and operate, and
also has the ability to scale to produce more powerful
neutral hydrogen flux. It is also possible to create sever-
al such cells located sequentially to control the front of
the gas wave by programmatically starting individual
cells.
REFERENCES
1. R. Raman et al. // Rev. Sci. Instr. 2014, v. 85 (11),
p. 10.1063/1.4885545.
2. M. Griener et al. // Rev. Sci. Instr. 2017, v. 88 (33),
p. 10.1063/1.4978629.
3. A.V. Agarkov et al. // Problems of Atomic Sci. and
Tech. Series “Plasma Electronics and New Acceleration
Methods” (86). Seri. “Plasma Physics”. 2013, № 4,
p.301-303.
4. V.A. Makhlaj et al. // Phys. Scr. 2014, v. T161,
p. 014040.
Article received 27.09.2018
ВОДОРОДНЫЙ ИНЖЕКТОР НА ОСНОВЕ РАЗРЯДА ПЕННИНГА С МЕТАЛЛОГИДРИДНЫМ
КАТОДОМ
И.Н. Середа, Я.А. Гречко, А.Ф. Целуйко, Д.Л. Рябчиков
Представлены результаты работы импульсного инжектора нейтрального водорода на основе разряда
Пеннинга с металлогидридным полым катодом. Источником химически чистого водорода служит гетерный
сплав Zr50V50, изготовленный в виде полого катода. Основное выделение водорода в газовую фазу происхо-
дит под воздействием разрядного тока (порядка 20 А) за короткий промежуток времени, порядка нескольких
сотен микросекунд, в течение работы сильноточного режима разряда. Показано, что скорость распростране-
ния газового фронта зависит от разрядного тока и определяется температурой поверхности металлогидрид-
ного катода. Максимальное значение скорости распространения газового фронта получено на уровне
5·105 см/с при количестве водорода, десорбированного за импульс длительностью 400 мкс порядка
1,5·10-3 см3 при нормальных условиях и затраченной энергии 0.34 Дж.
ВОДНЕВИЙ ІНЖЕКТОР НА БАЗІ РОЗРЯДУ ПЕНІНГА З МЕТАЛОГІДРИДНИМ КАТОДОМ
І.М. Середа, Я.О. Гречко, О.Ф. Целуйко, Д.Л. Рябчиков
Представлено результати роботи імпульсного інжектора нейтрального водню на основі розряду Пенінга з
металогідридним порожнистим катодом. Джерелом хімічно чистого водню є гетерний сплав Zr50V50, який
виготовлено у вигляді порожнистого катода. Основне виділення водню в газову фазу відбувається під впли-
вом розрядного струму (близько 20 А) за короткий проміжок часу, близько декількох сотень мікросекунд,
протягом роботи потужнострумового режиму розряду. Показано, що швидкість поширення газового фронту
залежить від розрядного струму і визначається температурою водню. Максимальне значення швидкості по-
ширення газового фронту отримано на рівні 5·105 см/с при кількості водню, що десорбується за імпульс три-
валістю 400 мкс близько 1,5·10-3 см3 при нормальних умовах і витраченій енергії 0,34 Дж.
c
m
/
s
μ
s
|