Hydrogen injector based on penning discharge with metal hydride cathode

The paper presents the results of the investigation of a neutral-hydrogen pulse injector based on Penning discharge with a metal hydride hollow cathode. The source of chemically pure hydrogen is a getter alloy Zr₅₀V₅₀ made in the form of a hollow cathode. The main release of hydrogen into the gas p...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Sereda, I.N., Hrechko, Ya.O., Tseluyko, A.F., Ryabchikov, D.L.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2018
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/148843
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Hydrogen injector based on penning discharge with metal hydride cathode / I.N. Sereda, Ya.O. Hrechko, A.F. Tseluyko, D.L. Ryabchikov // Вопросы атомной науки и техники. — 2018. — № 6. — С. 222-224. — Бібліогр.: 4 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148843
record_format dspace
spelling irk-123456789-1488432019-02-19T01:29:39Z Hydrogen injector based on penning discharge with metal hydride cathode Sereda, I.N. Hrechko, Ya.O. Tseluyko, A.F. Ryabchikov, D.L. Низкотемпературная плазма и плазменные технологии The paper presents the results of the investigation of a neutral-hydrogen pulse injector based on Penning discharge with a metal hydride hollow cathode. The source of chemically pure hydrogen is a getter alloy Zr₅₀V₅₀ made in the form of a hollow cathode. The main release of hydrogen into the gas phase occurs under the influence of discharge current (about 20 A) in a short period of time (several hundred microseconds), during the operation in the high-current discharge regime. It is shown, that the propagation velocity of the gas front depends on the discharge current and is determined by the hydrogen temperature. The maximum velocity of gas front propagation is obtained at the level of 5·10⁵ cm/s. The amount of hydrogen desorbed per 400-μc pulse isabout 1.5·10⁻³ cm³ under normal conditions and the energy is expended on the level of 0.34 J. Представлено результати роботи імпульсного інжектора нейтрального водню на основі розряду Пенінга з металогідридним порожнистим катодом. Джерелом хімічно чистого водню є гетерний сплав Zr₅₀V₅₀, який виготовлено у вигляді порожнистого катода. Основне виділення водню в газову фазу відбувається під впливом розрядного струму (близько 20 А) за короткий проміжок часу, близько декількох сотень мікросекунд, протягом роботи потужнострумового режиму розряду. Показано, що швидкість поширення газового фронту залежить від розрядного струму і визначається температурою водню. Максимальне значення швидкості поширення газового фронту отримано на рівні 5·10⁵ см/с при кількості водню, що десорбується за імпульс тривалістю 400 мкс близько 1,5·10⁻³ см³ при нормальних умовах і витраченій енергії 0,34 Дж. Представлены результаты работы импульсного инжектора нейтрального водорода на основе разряда Пеннинга с металлогидридным полым катодом. Источником химически чистого водорода служит гетерный сплав Zr₅₀V₅₀, изготовленный в виде полого катода. Основное выделение водорода в газовую фазу происходит под воздействием разрядного тока (порядка 20 А) за короткий промежуток времени, порядка нескольких сотен микросекунд, в течение работы сильноточного режима разряда. Показано, что скорость распространения газового фронта зависит от разрядного тока и определяется температурой поверхности металлогидридного катода. Максимальное значение скорости распространения газового фронта получено на уровне 5·10⁵ см/с при количестве водорода, десорбированного за импульс длительностью 400 мкс порядка 1,5·10⁻³ см³ при нормальных условиях и затраченной энергии 0.34 Дж. 2018 Article Hydrogen injector based on penning discharge with metal hydride cathode / I.N. Sereda, Ya.O. Hrechko, A.F. Tseluyko, D.L. Ryabchikov // Вопросы атомной науки и техники. — 2018. — № 6. — С. 222-224. — Бібліогр.: 4 назв. — англ. 1562-6016 PACS: 52.80.Sm http://dspace.nbuv.gov.ua/handle/123456789/148843 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Низкотемпературная плазма и плазменные технологии
Низкотемпературная плазма и плазменные технологии
spellingShingle Низкотемпературная плазма и плазменные технологии
Низкотемпературная плазма и плазменные технологии
Sereda, I.N.
Hrechko, Ya.O.
Tseluyko, A.F.
Ryabchikov, D.L.
Hydrogen injector based on penning discharge with metal hydride cathode
Вопросы атомной науки и техники
description The paper presents the results of the investigation of a neutral-hydrogen pulse injector based on Penning discharge with a metal hydride hollow cathode. The source of chemically pure hydrogen is a getter alloy Zr₅₀V₅₀ made in the form of a hollow cathode. The main release of hydrogen into the gas phase occurs under the influence of discharge current (about 20 A) in a short period of time (several hundred microseconds), during the operation in the high-current discharge regime. It is shown, that the propagation velocity of the gas front depends on the discharge current and is determined by the hydrogen temperature. The maximum velocity of gas front propagation is obtained at the level of 5·10⁵ cm/s. The amount of hydrogen desorbed per 400-μc pulse isabout 1.5·10⁻³ cm³ under normal conditions and the energy is expended on the level of 0.34 J.
format Article
author Sereda, I.N.
Hrechko, Ya.O.
Tseluyko, A.F.
Ryabchikov, D.L.
author_facet Sereda, I.N.
Hrechko, Ya.O.
Tseluyko, A.F.
Ryabchikov, D.L.
author_sort Sereda, I.N.
title Hydrogen injector based on penning discharge with metal hydride cathode
title_short Hydrogen injector based on penning discharge with metal hydride cathode
title_full Hydrogen injector based on penning discharge with metal hydride cathode
title_fullStr Hydrogen injector based on penning discharge with metal hydride cathode
title_full_unstemmed Hydrogen injector based on penning discharge with metal hydride cathode
title_sort hydrogen injector based on penning discharge with metal hydride cathode
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2018
topic_facet Низкотемпературная плазма и плазменные технологии
url http://dspace.nbuv.gov.ua/handle/123456789/148843
citation_txt Hydrogen injector based on penning discharge with metal hydride cathode / I.N. Sereda, Ya.O. Hrechko, A.F. Tseluyko, D.L. Ryabchikov // Вопросы атомной науки и техники. — 2018. — № 6. — С. 222-224. — Бібліогр.: 4 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT seredain hydrogeninjectorbasedonpenningdischargewithmetalhydridecathode
AT hrechkoyao hydrogeninjectorbasedonpenningdischargewithmetalhydridecathode
AT tseluykoaf hydrogeninjectorbasedonpenningdischargewithmetalhydridecathode
AT ryabchikovdl hydrogeninjectorbasedonpenningdischargewithmetalhydridecathode
first_indexed 2025-07-12T20:25:52Z
last_indexed 2025-07-12T20:25:52Z
_version_ 1837474212830248960
fulltext ISSN 1562-6016. ВАНТ. 2018. №6(118) 222 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2018, № 6. Series: Plasma Physics (118), p. 222-224. HYDROGEN INJECTOR BASED ON PENNING DISCHARGE WITH METAL HYDRIDE CATHODE I.N. Sereda, Ya.O. Hrechko, A.F. Tseluyko, D.L. Ryabchikov V.N.Karazin Kharkiv National University, Kharkiv, Ukraine E-mail: igorsereda@karazin.ua The paper presents the results of the investigation of a neutral-hydrogen pulse injector based on Penning dis- charge with a metal hydride hollow cathode. The source of chemically pure hydrogen is a getter alloy Zr50V50 made in the form of a hollow cathode. The main release of hydrogen into the gas phase occurs under the influence of dis- charge current (about 20 A) in a short period of time (several hundred microseconds), during the operation in the high-current discharge regime. It is shown, that the propagation velocity of the gas front depends on the discharge current and is determined by the hydrogen temperature. The maximum velocity of gas front propagation is obtained at the level of 5·105 cm/s. The amount of hydrogen desorbed per 400-μc pulse isabout 1.5·10-3 cm3 under normal conditions and the energy is expended on the level of 0.34 J. PACS: 52.80.Sm INTRODUCTION An important part of the sources of ionized and neu- tral particles, as well as devices that perform gas supply of toroidal traps are pulsed gas injectors [1]. There are two types of injectors: piezoelectric and electro- magnetic ones [1, 2]. The first are characterized by low power consumption and high response rate with a char- acteristic time of the gas pulse at a level of hundreds of microseconds. However, due to the small stroke of the piezoelectric element and the small flow cross section, they are not able to provide a large flow of gas [2]. Electromagnetic injectors, on the contrary, do not have a high speed, but they provide large gas flows [1, 2]. For devices operating on hydrogen or its isotopes, it is convenient to use getter injectors as a source of hy- drogen, which are comparable or superior to piezoelec- tric injectors by fast-action, and can compete with elec- tromagnetic ones in terms of gas flow. To their short- comings can be attributed the need for periodic rather laborious regeneration and the possibility of working only with one type of gas – hydrogen. However, the undeniable advantages of getter injectors stimulate the development and improvement of them. The main element of the getter injectors is a storage based on reversible metal hydride alloys, for example, zirconium and vanadium. These alloys have a sufficient- ly large hydrogen capacity and allow multiple recharg- ing. Slow injection of hydrogen is due to the smooth heating of the entire accumulator, and fast – by the re- lease of pulsed energy on its surface [3]. The magnitude of the flow of hydrogen is mainly determined by the size of the surface. For pulse energy contribution, both electron and ion beams are suitable. In the second case, applying the Penning discharge one can form ion beams on signifi- cant surfaces without using thermal cathodes and other power-consuming elements. In addition, the yield of hydrogen here will be determined not only by the ther- mal effects of hydride phases decomposition, but also by ion stimulated processes [3]. Consideringthe possibility of the injector operating at high vacuum, the Penning discharge with its wide working pressure range fits best. Additional features of this injector are the ease of implementation and opera- tion. In addition to the neutral hydrogen flow, it is also possible to form a hydrogen plasma flux. The latter is important for cathode-transformers of quasi-stationary plasma accelerators [4]. When designing pulse getter hydrogen injectors, it is important to know a number of fundamental parameters: the amount of desorbed hydrogen from a surface unit, the specific energy input, and the start time of the dis- charge. The purpose of this paper is to investigate the possi- bility of using a Penning pulse discharge with a metal hydride cathode as a neutral hydrogen pulse injector. 1. EXPERIMENTAL SETUP Fig. 1 shows the scheme of the metal hydride hydro- gen injector based on the Penning discharge. To en- hance the discharge current, the metal hydride desorp- tion element is designed as a hollow cathode. The Penning cell is formed by two disk cathodes C1 and C2 made of magnetically conductive steel and a tube-like anode A. A longitudinal magnetic field of 500 Oe is created by two annular permanent magnets M. The sealing is carried out by a branch pipe W, which ends with rubber nipples seals in cathode slots. The an- ode A and the branch pipe W are made of non-magnetic stainless steel. In the central region of the cathode C2 there are 7 apertures 4 mm in diameter for gas outlet. Through the same apertures, the pumping of the discharge gap is performed. In the center of the cathode C1 in the branch pipe there is a metal hydride hollow cathode MHC in the form of a tube 12 mm long with external and internal diameters of 8 and 3 mm, respectively. The MHC cath- ode is made by pressing hydrogen-saturated powder of Zr50V50 alloy with copper binder. The initial hydrogen saturation degree was ~ 500 cm3 under normal condi- tions. A voltage pulse with amplitude up to + 4 kV was sup- plied to the cell anode from a capacitor C0 of 1.5 μF ISSN 1562-6016. ВАНТ. 2018. №6(118) 223 through a controlled switch S (thyratron TGI-400/16) and a ballast resistance Rb = 190 Ω. The discharge volt- age Vd was measured by a balanced voltage divider, and the current id – by the Rogowski coil. In the experiments in order to eliminate the formation of an electron of the cathodes MHC, C1 and C2 was the same. beam by the hollow cathode with following gas ioniza- tion, the potential. Fig. 1. Metal hydride hydrogen injector with a layout of pressure sensors To study the dynamics of neutral gas propagation, the injector was docked to a vacuum chamber through a glass tube GT 40 cm long and 5.6 cm in diameter. With- in the tube there were miniature ionization pressure sen- sors P1 and P2 at the distance of 15 and 25 cm from the injector. The sensors had a spiral filament cathode, a cylindrical anode and they operated on the principle of measuring the current in the cathode circuit. The emis- sion current was 1 mA, the supplied voltage was 50 V. To reduce interference, the sensors used battery power. The dynamics of the pressure in the chamber was investigated by the signal from PMI-2 sensor. 2. RESULTS AND DISCUSSION The operation of metal hydride hydrogen injector based on Penning discharge is illustrated by the oscillo- gramsin Fig. 2 Voltage (a – general view, b – increased sensitivity) and current (c ‒ oscillograms are clearly show two discharge stages: high-voltage (100  t  200 μs) and high-current (200  t  480 μs). In the high-current stage, the discharge voltage (b) lies in the range 50...120 V, and this indicates that there is an arc discharge. The dynamic of particle concentration along the glass tube GT is illustrated in (see Fig. 2,d), where oscil- lograms of the current of two ionization pressure sen- sors are shown. When the voltage is applied to the injec- tor, the current of both sensors slightly increases (close one by 8 %, far one by 2 %) and remains practically constant for ~ 70 μs. This current, apparently, is due to ion beam, which is formed in Penning discharge. (The arrival time of hydrogen ions to the sensors is ~ 0.2 ... 0.3 μs. There is practical synchronism in the currents). At the final stage of the high-voltage discharge stage (170  t  200 μs), the current is increased to 20 % at close sensor, and after 20 μs delay on the far one. Here, apparently, an intensive ion-stimulated desorption of hydrogen from the metal hydride surface begins. An even greater (up to 70 %) increase in the sensor current is observed in the high-current (arc) discharge stage. The thermal mechanisms of hydrogen desorption are included in the arc due to decomposition of hydride phases. Fig. 2. The dynamics of the voltage (a, b) and discharge current (c), as well as the relative change in the current of the pressure sensors (d) 100µ 200µ 300µ 400µ 500µ 0 1 2 3 4 V d , kV t, sec 100µ 200µ 300µ 400µ 500µ 0 10 20 i d , A t, sec 100µ 200µ 300µ 400µ 500µ 1.0 1.2 1.4 1.6 P 1 P 2 P, a.u. t, sec 100µ 200µ 300µ 400µ 500µ 0.0 0.1 0.2 V d , kV t, sec b c d t = 20μsec a l1 l2 C0 +V0 S Vd id B B A MHC C2 M M P1 P2 GT C1 B Rb W t, s t, s t, s t, s 224 ISSN 1562-6016. ВАНТ. 2018. №6(118) The gas temperature in the discharge can be judged from the propagation velocity of the pressure front. Cal- culated (see Fig. 2,d) from the current delay in the pres- sure sensors, the front velocity was ~ 5·105 cm/s, which corresponds to a hydrogen temperature of ~ 2500 K. The duration of the high-voltage stage depended on the capacitor charge voltage and in our case was 100...500 μs at voltages of 2.5...4.0 kV. The energy re- leased in the discharge at this stage was ~ 0.04 J at an average power of ~ 400 W. The duration of the high-current stage varied in the range of 480...580 μs. The energy released in the dis- charge at this stage was ~ 0.3 J at an average power of ~ 1 kW. Fig. 3 shows the velocity of gas front propagation during the discharge operation in high-current stage. It can be seen that theincrease in the power loaded to the metal hydride cathode leads to a sufficient increase in the velocity. The same figure shows the time depend- ence of the discharge transition into a high-current stage. One could approximate it with linear. 2.50 2.75 3.00 3.25 3.50 3.75 4.00 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 t ,  se c v* 1 0 5 , cm / s ec U d , kV 100 150 200 250 300 350 400 450 Fig. 3. Dependence of the gas front propagation veloci- ty on the charge voltage and the transition time of the discharge to the high-current stage To determine the amount of hydrogen released for the pulse, a PMI-2 manometer was used, which was installed at the outlet of the vacuum tube.The amount of desorbed hydrogen per pulse was calculated by measur- ing the relative change in pressure in the vacuum cham- ber with oscilloscope. Estimations have shown that ap- proximately 1.5 · 10-3 cm3 of hydrogen under normal conditions is desorbed during the pulse. CONCLUSIONS Thus, it has been shown the possibility of creating a neutral hydrogen injector, where the amount and the propagation velocity of the hydrogen front can be regu- lated by a discharge current of a different duration. The proposed design is easy to manufacture and operate, and also has the ability to scale to produce more powerful neutral hydrogen flux. It is also possible to create sever- al such cells located sequentially to control the front of the gas wave by programmatically starting individual cells. REFERENCES 1. R. Raman et al. // Rev. Sci. Instr. 2014, v. 85 (11), p. 10.1063/1.4885545. 2. M. Griener et al. // Rev. Sci. Instr. 2017, v. 88 (33), p. 10.1063/1.4978629. 3. A.V. Agarkov et al. // Problems of Atomic Sci. and Tech. Series “Plasma Electronics and New Acceleration Methods” (86). Seri. “Plasma Physics”. 2013, № 4, p.301-303. 4. V.A. Makhlaj et al. // Phys. Scr. 2014, v. T161, p. 014040. Article received 27.09.2018 ВОДОРОДНЫЙ ИНЖЕКТОР НА ОСНОВЕ РАЗРЯДА ПЕННИНГА С МЕТАЛЛОГИДРИДНЫМ КАТОДОМ И.Н. Середа, Я.А. Гречко, А.Ф. Целуйко, Д.Л. Рябчиков Представлены результаты работы импульсного инжектора нейтрального водорода на основе разряда Пеннинга с металлогидридным полым катодом. Источником химически чистого водорода служит гетерный сплав Zr50V50, изготовленный в виде полого катода. Основное выделение водорода в газовую фазу происхо- дит под воздействием разрядного тока (порядка 20 А) за короткий промежуток времени, порядка нескольких сотен микросекунд, в течение работы сильноточного режима разряда. Показано, что скорость распростране- ния газового фронта зависит от разрядного тока и определяется температурой поверхности металлогидрид- ного катода. Максимальное значение скорости распространения газового фронта получено на уровне 5·105 см/с при количестве водорода, десорбированного за импульс длительностью 400 мкс порядка 1,5·10-3 см3 при нормальных условиях и затраченной энергии 0.34 Дж. ВОДНЕВИЙ ІНЖЕКТОР НА БАЗІ РОЗРЯДУ ПЕНІНГА З МЕТАЛОГІДРИДНИМ КАТОДОМ І.М. Середа, Я.О. Гречко, О.Ф. Целуйко, Д.Л. Рябчиков Представлено результати роботи імпульсного інжектора нейтрального водню на основі розряду Пенінга з металогідридним порожнистим катодом. Джерелом хімічно чистого водню є гетерний сплав Zr50V50, який виготовлено у вигляді порожнистого катода. Основне виділення водню в газову фазу відбувається під впли- вом розрядного струму (близько 20 А) за короткий проміжок часу, близько декількох сотень мікросекунд, протягом роботи потужнострумового режиму розряду. Показано, що швидкість поширення газового фронту залежить від розрядного струму і визначається температурою водню. Максимальне значення швидкості по- ширення газового фронту отримано на рівні 5·105 см/с при кількості водню, що десорбується за імпульс три- валістю 400 мкс близько 1,5·10-3 см3 при нормальних умовах і витраченій енергії 0,34 Дж. c m / s μ s