Momentum-space analysis of suprathermal electrons Generation under conditions of gas puffing during Runaway tokamak discharges

Using the 2D test particle description, that includes acceleration in the toroidal electric field and collisions with the plasma particles, the generation of suprathermal electrons is analyzed under conditions of working gas puffing close to the Doublet III-D (DIII-D, General Atomics, USA) quiesce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Pankratov, I.M., Bochko, V.Y.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2018
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/148844
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Momentum-space analysis of suprathermal electrons Generation under conditions of gas puffing during Runaway tokamak discharges / I.M. Pankratov, V.Y. Bochko // Вопросы атомной науки и техники. — 2018. — № 6. — С. 8-11. — Бібліогр.: 11 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148844
record_format dspace
spelling irk-123456789-1488442019-02-19T01:26:26Z Momentum-space analysis of suprathermal electrons Generation under conditions of gas puffing during Runaway tokamak discharges Pankratov, I.M. Bochko, V.Y. Магнитное удержание Using the 2D test particle description, that includes acceleration in the toroidal electric field and collisions with the plasma particles, the generation of suprathermal electrons is analyzed under conditions of working gas puffing close to the Doublet III-D (DIII-D, General Atomics, USA) quiescent runaway shot #152895 parameters. As the result of close collisions, the formation of trapped suprathermal electron population in a nonuniform tokamak magnetic field has been shown. Проведено аналіз генерації надтеплових електронів у токамаці DIII-D для параметрів, близьких до квазістаціонарного розряду з електронами-втікачами #152895, за умов напуску робочого газу. Були використані рівняння руху пробної частинки на двомірній фазовій площині з урахуванням прискорення тороїдальним електричним полем та зіткнень із частинками плазми. Показано, що в результаті близьких кулонівських зіткнень утворюється популяція надтеплових електронів, захоплених неоднорідним магнітним полем токамака. Проведен анализ генерации надтепловых электронов в токамаке DIII-D при параметрах, близких к квазистационарному разряду с убегающими электронами #152895, в условиях напуска рабочего газа. Использованы уравнения движения пробной частицы на двумерной фазовой плоскости с учетом ускорения ее тороидальным электрическим полем и столкновений с частицами плазмы. Показано, что в результате близких кулоновских столкновений образуется популяция надтепловых электронов, захваченных неоднородным магнитным полем токамака. 2018 Article Momentum-space analysis of suprathermal electrons Generation under conditions of gas puffing during Runaway tokamak discharges / I.M. Pankratov, V.Y. Bochko // Вопросы атомной науки и техники. — 2018. — № 6. — С. 8-11. — Бібліогр.: 11 назв. — англ. 1562-6016 PACS: 52.55.Fa; 52.38.Ph; 52.65.Cс http://dspace.nbuv.gov.ua/handle/123456789/148844 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Магнитное удержание
Магнитное удержание
spellingShingle Магнитное удержание
Магнитное удержание
Pankratov, I.M.
Bochko, V.Y.
Momentum-space analysis of suprathermal electrons Generation under conditions of gas puffing during Runaway tokamak discharges
Вопросы атомной науки и техники
description Using the 2D test particle description, that includes acceleration in the toroidal electric field and collisions with the plasma particles, the generation of suprathermal electrons is analyzed under conditions of working gas puffing close to the Doublet III-D (DIII-D, General Atomics, USA) quiescent runaway shot #152895 parameters. As the result of close collisions, the formation of trapped suprathermal electron population in a nonuniform tokamak magnetic field has been shown.
format Article
author Pankratov, I.M.
Bochko, V.Y.
author_facet Pankratov, I.M.
Bochko, V.Y.
author_sort Pankratov, I.M.
title Momentum-space analysis of suprathermal electrons Generation under conditions of gas puffing during Runaway tokamak discharges
title_short Momentum-space analysis of suprathermal electrons Generation under conditions of gas puffing during Runaway tokamak discharges
title_full Momentum-space analysis of suprathermal electrons Generation under conditions of gas puffing during Runaway tokamak discharges
title_fullStr Momentum-space analysis of suprathermal electrons Generation under conditions of gas puffing during Runaway tokamak discharges
title_full_unstemmed Momentum-space analysis of suprathermal electrons Generation under conditions of gas puffing during Runaway tokamak discharges
title_sort momentum-space analysis of suprathermal electrons generation under conditions of gas puffing during runaway tokamak discharges
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2018
topic_facet Магнитное удержание
url http://dspace.nbuv.gov.ua/handle/123456789/148844
citation_txt Momentum-space analysis of suprathermal electrons Generation under conditions of gas puffing during Runaway tokamak discharges / I.M. Pankratov, V.Y. Bochko // Вопросы атомной науки и техники. — 2018. — № 6. — С. 8-11. — Бібліогр.: 11 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT pankratovim momentumspaceanalysisofsuprathermalelectronsgenerationunderconditionsofgaspuffingduringrunawaytokamakdischarges
AT bochkovy momentumspaceanalysisofsuprathermalelectronsgenerationunderconditionsofgaspuffingduringrunawaytokamakdischarges
first_indexed 2025-07-12T20:26:02Z
last_indexed 2025-07-12T20:26:02Z
_version_ 1837474220045500416
fulltext ISSN 1562-6016. ВАНТ. 2018. №6(118) 8 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2018, № 6. Series: Plasma Physics (118), p. 8-11. MOMENTUM-SPACE ANALYSIS OF SUPRATHERMAL ELECTRONS GENERATION UNDER CONDITIONS OF GAS PUFFING DURING RUNAWAY TOKAMAK DISCHARGES I.M. Pankratov1, 2, V.Y. Bochko1 1V.N. Karazin Kharkiv National University, Kharkiv, Ukraine; 2National Science Center “Kharkov Institute of Physics and Technology”, Institute of Plasma Physics, Kharkiv, Ukraine Using the 2D test particle description, that includes acceleration in the toroidal electric field and collisions with the plasma particles, the generation of suprathermal electrons is analyzed under conditions of working gas puffing close to the Doublet III-D (DIII-D, General Atomics, USA) quiescent runaway shot #152895 parameters. As the result of close collisions, the formation of trapped suprathermal electron population in a nonuniform tokamak magnetic field has been shown. PACS: 52.55.Fa; 52.38.Ph; 52.65.Cс INTRODUCTION The energy of disruption generated runaway electrons can reach as high as tens of mega-electron-volt energy and they can cause a serious damage of plasma- facing-component surfaces in large tokamaks like ITER [1]. The precise measurement of runaway electron parameters during disruptions is not so easy to carry out. At the same time, the quiescent runaway electron (RE) generation during the flat-top of DIII-D low density Ohmic discharges allows accurate measurement of all key important parameters to runaway electron excitation [2, 3]. Precise measurements of RE distribution functions and dissipation rates in the spatial, temporal and energy domains were carried out, a new effective diagnostic called the “Gamma Ray Imager” was applied. Quantitative discrepancies between experimental measurements and modeling were found for all RE energies, but the most qualitative discrepancy was found at low energy. Our analysis of electron trajectories in the 2D runaway region (p∥, p⊥) shows that the suprathermal electron population with p∥ < p⊥ occurs (p∥ and p⊥ are longitudinal and transversal components of momentum with respect to the confining magnetic field, respectively). In this case, the suprathermal electrons, which are trapped in a non-uniform magnetic field, may appear in tokamak [4]. A possibility of formation of such suprathermal electrons during recent DIII-D experiments [2, 3] is investigated in the paper. 1. RUNAWAY DIII-D EXSPERIMENTS UNDER QUIESCENT CONDITIONS In DIII-D, the behavior of REs were investigated during flat-top stage of Ohmic discharges with the parameters: toroidal magnetic field was Bt = 1.4 T, plasma current was Ip = 0.8 MA and loop voltage was Vloop = 0.6 V [2, 3]. Low density access led to the generation of a primary RE population which was built up over several seconds. Near the end of this discharge, strong puff of working gas was used, which cause RE parameter variations. During this puffing the value of plasma density increased approximately from the value of ne ≈ 0.5 1019 m-3 to the value of ne ≈ 1.5 10 19 m-3 and the ion effective charge Zeff (t) dropped from the value of 2 to 1.25. The primary generation mechanism was the dominated mechanism during these experiments. Specific behavior of the ECE signal was observed. 2. 2D-MOMENTUM-SPACE ANALYSIS OF SUPRATHERMAL ELECTRON GENERATION Here we model this situation. To study qualitatively the behavior of electron trajectories in runaway region during duration of the gas puff (τ ≈ 0.5 s), the plasma parameter evolution in time is given by the next equations: ( ) ( ) ( ) ( )( )/ 0 1 0 / ,e e e en t n n n tτ τ= + − (1) ( ) ( ) ( ) ( )( )/ 0 1 0 / ,eff eff eff effZ t Z Z Z tτ τ= + − (2) where ne(0) = 0.5 1019 m-3, ne(1) = 1.25 1019 m-3, Zeff(0) = 2, Zeff(1) = 1.25. The zero of normalized time, 0, corresponds to gas puff start. We use 2D equations (like [5]) of test electrons in normalized form: ( ) ( )( ) ( )3/22 2 0 1 2 ,e eff cr dp eE p n t Z t dt p p p τ ⊥    = − +   +  � � � � (3) ( ) ( )( ) 22 2 22 2 0 2 2 1 ,e eff cr eE pn tdp Z t dt p p pp p τ⊥ ⊥⊥   = + −  ++   � � �� (4) where ,p ⊥� → , 0/ crp p⊥� , the electron density ( )en t → ( ) ( )/ 0e en t n , t→ /t τ , E � is the toroidal electric field, e, me are the charge and rest mass of ISSN 1562-6016. ВАНТ. 2018. №6(118) 9 electron, respectively, L is the Coulomb logarithm (E|| = 50 mV/m, L = 15) and ( )2 3 2 0 00 / 4cr e ep e m n L Eπε= � . (5) Here we analyze the suprathermal region that is why the acceleration due to the toroidal electric field and the effect of the collisions with the plasma particles are taken into account in Eqs. (3) and (4) only. Fig. 1. The primary and secondary runaway regions (1) are presented (normalized variables are used); Sr(0,1) and Sa(0,1) (red) are separatrixes [5, 6] for plasma parameters at t=0 or t=1. The curve 0(2 / )e crp m c p p⊥ = � is shown by brown (2), the locus of the knocked-on electrons lies below this curve. Straight lines / 1 / 2p p ε⊥ = � (q = 1, 3/2, 2) are marked by green (3), q is the safety factor. Typical test electron trajectories (flowing around “virtual” saddle point ( ||, ,,S Sp p⊥ )) are shown by blue, dots correspond to starting points at t=0.5, directions of electron motion are shown by arrows. The evolution of the “virtual” saddle point location in time is shown by dark blue (4) For constant values of parameters ne and Zeff at t = 0 and 1 the separatrixes Sr(0,1) and Sa(0,1) separate trajectories of test electron by usual way [5, 6]. Only electrons with coordinates initially situated above Sr may run away. For 0 < t < 1 these parameters ne and Zeff are not constants, the dynamic situation takes place. Coordinates of the saddle point (“virtual” saddle point) change in time: ( )2 , ( ) ( ( ) 1) / ( ) 2S e eff effp t n t Z t Z t⊥ = + + , (6) ( )2 , ( ) / ( ) 2S e effp t n t Z t= + � . (7) For trajectories near “virtual” saddle point the inequality p∥ < p⊥ holds and the motion of electrons here is not so fast in 2D plane, the time is the order of (0.06…0.1) τ). Recall, in accordance with the conservation laws of energy and momentum, the knocked-on electrons of secondary generation are arranged on elongated ellipses, the major axes of which are equal to the momentum of the incident mega-electron-volt electrons. Secondary runaway region in the phase space (p∥, p⊥) is filled by these ellipses. This region is bounded from the top by the curve (see, e.g. [4]) 0(2 / )e crp m c p p⊥ = � . (8) 3. BANANA ORBITS OF TRAPPED SUPRATHERMALS Confining magnetic field in tokamak is non-uniform and is described by Eq. (9): ( ) 0, 1 cos B B r θ ε θ = − , (9) where ε = r/R, r is the radius of magnetic surface, R is the major radius, θ is the poloidal angle, the value θ = π corresponds to low field side (lfs). Straight lines / 1 / 2p p ε⊥ = � (10) for the values of safety factor q=1, 3/2 and 2 are shown in Fig. 1 (the data from Fig. 2h of Ref. [2] are used). The entire range of locus of the knocked-on electrons in 2D plane (p∥, p⊥) lies above straight lines of Eq. (10). These electrons may be trapped in a non-uniform tokamak magnetic field. It is the necessary criterion, but not sufficient condition. At t > 0.5 the crossing of saddle point curve with the q = 3/2 straight line is visible. As it is clear from trajectories analysis for primary test electrons in Fig. 1, that for these electrons the probability of such trapping in a non-uniform magnetic field is not so high. It is necessary to distinguish situation on the outer (lfs) and inner sides of the tokamak discharge. The suprathermal electrons are trapped in the lfs region. Narrow banana orbits of these trapped suprathermal electrons are shown in Fig. 2. More strong losses of these trapped electrons may occur from the plasma region where these electrons are located (outer part of discharge). It is possible even formation of supertrapped electrons (on the ripples of a longitudinal magnetic field) which escape from the plasma owing to toroidal drift. Bounce period of trapped suprathermal electrons is equal to Tb = 0.47μs (q = 1.5) and Tb = 0.59μs (q = 2) for Fig. 2,a. For Fig. 2,b Tb = 0.34 μs (q = 1.5) and Tb = 0.42 μs (q = 2). Note, the strong inequality ωbs >> νeffcoll holds, where ωbs is the oscillation frequency of the bounce motion of trapped suprathermal electrons in a non-uniform magnetic field and νeffcoll is the effective collision frequency (regime of banana trajectories). Ratio ωbs / νeffcoll can reach about five orders of magnitude. The pitch angle was taken into account in estimation of the value of νeffcoll. The runaway energy E ≥ 25 MeV was deduced in Ref. [2] from the DIII-D experimental data analysis. It 10 ISSN 1562-6016. ВАНТ. 2018. №6(118) means that in the DIII-D experiment [2, 3] the secondary runaway generation process should take place with avalanching time tav [6] 12 (2 ) / 9av e efft m cL Z eE≈ + � . (11) For the DIII-D experiments [2] tav ≈ 1 s. The value of tav ≈ 1 s is the same order of the value of duration of gas puff (τ ≈ 0.5 s). However, because of the trapping of the knock-on electrons, the avalanching process may be suppressed in part. Fig. 2. Narrow banana orbits of suprathermal electrons (banana width is (0.3…0.6) cm). The values of p⊥ and p∥ corresponds to point θ = π, Est is the energy of suprathermals: a) p⊥/p∥ = 1.6/0.5 = 3.2, Est ≈ 50 keV, b) p⊥/p∥ = 2.2/0.8 = 2.75, Est ≈ 100 keV. Numbers 1, 2 corresponds to orbits near q = 1.5 and q = 2, respectively. Plasma edge is shown by 3, the direction of electron poloidal motion along the outer banana part is shown by arrow Recall, due to the radial viewing geometry of the ECE radiometers on DIII-D, these diagnostics probe the high pitch-angle RE population [2, 3]. This non-thermal electron cyclotron emission (ECE) must be strongly enhancement due to existence of the suprathermal electron population with high values of the p⊥ momentum, p⊥> p∥. Note, for fixed maximum runaway energy the amount of the knocked-on electrons decreases with plasma density increasing [7]. Our comment to Fig. 14 in [2] and Fig. 3 in [3], where ECE emission signal drop was observed after exceeding of a pre-set trip level. In our opinion, the more detail study of the influence of the trapped suprathermal electrons on the plasma stability is needed (see, e.g. Chapter 16 in Ref. [8]. Detail investigations of such instabilities for suprathermal electrons are planned in the future. If trapped knock-on electrons are created far enough from the magnetic axis (the DIII-D case), they may be detrapped and run away [9] because of these trapped electrons drift radially inwards due to the Ware pinch effect [10]. Analysis of the time it takes for initially trapped electrons to become runaways [9] || W B dt R E θ ε= ⋅∆ (12) shows that for the DIII-D quiescent runaway experiments [2,3] this time dtW is the order of 0.7s. (E|| = 50 mV/m, Bθ ≈ 0.2 T, R = 1.67 m, Δε ≈ 0.1). Here ( ) ( ),r rε ε ε ′∆ = − r is the radial position where the electron was trapped and r´ is the radial position where the electron stay detrapped and run away. For E|| = 5 V/m (disruption case) this time will be the order of 7 ms. For electric field 40 V/m this time will be about 870 μs which gives up to 200 banana turns before detrapping. The inequality 3 5CH CHE E E< < � holds in the DIII- D case [2], where 3 2 2 0/ 4CH e eE e n L m cπε= [11]. That it is why the nonrelativistic Eqs. (3, 4) are used. It was verified that presented results obtained from relativistic equations practically coincided with nonrelativistic one. CONCLUSIONS The analysis of electron trajectories in the 2D runaway region (p∥, p⊥) are carried out for parameters close to the DIII-D experiments [2, 3]. The formation population of trapped suprathermal electron with p∥ < p⊥ is shown during gas puffing, when plasma density ne and Zeff are changed in time. This phenomenon is strong for knocked-on electrons. Such population exists also before gas puff, but during gas puff, the test electron trajectories are modified in comparison with case of constant plasma parameters. Main conclusions: -The trapping of knocked-on suprathermal electrons (banana orbits) in non-uniform magnetic field must be taken into account. The avalanching (secondary runaway generation) process may be suppressed in part. -The effective collision frequency is much smaller in comparison with the oscillation frequency of the bounce motion of trapped suprathermal electrons. -The ECE signal must be strongly enhanced due to existence of the suprathermal electron population with a high value of transversal momentum, when p⊥ > p∥. -The plasma instability on trapped suprathermal electrons may occur and take effect on such electrons loss, on the ECE signal behavior and the RE distribution function changes in the region of low energies. -Additional losses of such electrons may take place from outer part of discharge. ISSN 1562-6016. ВАНТ. 2018. №6(118) 11 REFERENCES 1. Progress in the ITER Physics Basis // Nuclear Fusion. 2007, v. 47, p. S128-S202. 2. C. Paz-Soldan, N.W. Eidietis, R. Granetz, et al. Growth and decay of runaway electrons above the critical electric field under quiescent conditions // Physics of Plasmas. 2014, v. 21, p. 022514. 3. C. Paz-Soldan, C.M. Cooper, P. Aleynikov, et al. Resolving runaway electron distributions in spase, time, and energy // Physics of Plasmas. 2018, v. 25, p. 056105. 4. N.T. Besedin, I.M. Pankratov. Stability of a runaway electron beam // Nuclear Fusion. 1986, v. 26, p. 807- 812. 5. V. Fuchs, R.A. Cairns, C.N. Lashmore-Davies, et al. Velocity-space structure of runaway electrons // Phys. Fluids. 1986, v. 29, p. 2931-2936. 6. I.M. Pankratov, R. Jaspers, K.H. Finken, et al. Secondary generation of runaway electrons and its detection in tokamaks // Proc. 26th EPS Conf. on Contr. Fusion and Plasma Physics (Maastricht, 1999). European Physical Society, 1999, v. 23J, p. 597-600. 7. M.N. Rosenbluth, S.V. Putvinski. Theory for avalanche of runaway electrons in tokamaks // Nuclear Fusion. 1997, v. 37, p. 1355-1362. 8. A.B. Mikhailovskii. Instabilities of plasma in magnetic traps. Moscow: “Atomizdat”, 1978 (in Russian). 9. E. Nilsson, J. Decker, N.J. Fisch, et al. Trapped- electron runaway effect // J. Plasma Physics. 2015, v. 81, p. 475810403. 10. A.A. Ware. Pinch effect for trapped particles in a tokamak // Physical Review Letters. 1970, v. 25, p. 15- 17. 11. J.W. Connor, R.J. Hastie. Relativistic limitation on runaway electrons // Nuclear Fusion. 1975, v. 15, p. 415-424. Article received 18.09.2018 АНАЛИЗ В ИМПУЛЬСНОМ ПРОСТРАНСТВЕ ГЕНЕРАЦИИ НАДТЕПЛОВЫХ ЭЛЕКТРОНОВ ПРИ НАПУСКЕ ГАЗА В РАЗРЯДЫ ТОКАМАКА С УБЕГАЮЩИМИ ЭЛЕКТРОНАМИ И.М. Панкратов, В.Ю. Бочко Проведен анализ генерации надтепловых электронов в токамаке DIII-D при параметрах, близких к квазистационарному разряду с убегающими электронами #152895, в условиях напуска рабочего газа. Использованы уравнения движения пробной частицы на двумерной фазовой плоскости с учетом ускорения ее тороидальным электрическим полем и столкновений с частицами плазмы. Показано, что в результате близких кулоновских столкновений образуется популяция надтепловых электронов, захваченных неоднородным магнитным полем токамака. АНАЛІЗ В ІМПУЛЬСНОМУ ПРОСТОРІ ГЕНЕРАЦІЇ НАДТЕПЛОВИХ ЕЛЕКТРОНІВ ПРИ НАПУСКУ ГАЗУ В РОЗРЯДИ ТОКАМАКА З ЕЛЕКТРОНАМИ-ВТІКАЧАМИ І.М. Панкратов, В.Ю. Бочко Проведено аналіз генерації надтеплових електронів у токамаці DIII-D для параметрів, близьких до квазістаціонарного розряду з електронами-втікачами #152895, за умов напуску робочого газу. Були використані рівняння руху пробної частинки на двомірній фазовій площині з урахуванням прискорення тороїдальним електричним полем та зіткнень із частинками плазми. Показано, що в результаті близьких кулонівських зіткнень утворюється популяція надтеплових електронів, захоплених неоднорідним магнітним полем токамака.