Branching Laws for Some Unitary Representations of SL(4,R)

In this paper we consider the restriction of a unitary irreducible representation of type Aq(λ) of GL(4,R) to reductive subgroups H which are the fixpoint sets of an involution. We obtain a formula for the restriction to the symplectic group and to GL(2,C), and as an application we construct in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2008
Hauptverfasser: Ørsted, B., Speh, B.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2008
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/148973
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Branching Laws for Some Unitary Representations of SL(4,R) / B. Ørsted, B. Speh // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 28 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:In this paper we consider the restriction of a unitary irreducible representation of type Aq(λ) of GL(4,R) to reductive subgroups H which are the fixpoint sets of an involution. We obtain a formula for the restriction to the symplectic group and to GL(2,C), and as an application we construct in the last section some representations in the cuspidal spectrum of the symplectic and the complex general linear group. In addition to working directly with the cohmologically induced module to obtain the branching law, we also introduce the useful concept of pseudo dual pairs of subgroups in a reductive Lie group.