SUSY Quantum Hall Effect on Non-Anti-Commutative Geometry

We review the recent developments of the SUSY quantum Hall effect [hep-th/0409230, hep-th/0411137, hep-th/0503162, hep-th/0606007, arXiv:0705.4527]. We introduce a SUSY formulation of the quantum Hall effect on supermanifolds. On each of supersphere and superplane, we investigate SUSY Landau problem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2008
1. Verfasser: Hasebe, K.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2008
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/148987
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:SUSY Quantum Hall Effect on Non-Anti-Commutative Geometry / K. Hasebe // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 51 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We review the recent developments of the SUSY quantum Hall effect [hep-th/0409230, hep-th/0411137, hep-th/0503162, hep-th/0606007, arXiv:0705.4527]. We introduce a SUSY formulation of the quantum Hall effect on supermanifolds. On each of supersphere and superplane, we investigate SUSY Landau problem and explicitly construct SUSY extensions of Laughlin wavefunction and topological excitations. The non-anti-commutative geometry naturally emerges in the lowest Landau level and brings particular physics to the SUSY quantum Hall effect. It is shown that SUSY provides a unified picture of the original Laughlin and Moore-Read states. Based on the charge-flux duality, we also develop a Chern-Simons effective field theory for the SUSY quantum Hall effect.