Affine Poisson Groups and WZW Model

We give a detailed description of a dynamical system which enjoys a Poisson-Lie symmetry with two non-isomorphic dual groups. The system is obtained by taking the q → ∞ limit of the q-deformed WZW model and the understanding of its symmetry structure results in uncovering an interesting duality of i...

Full description

Saved in:
Bibliographic Details
Date:2008
Main Author: Klimcík, C.
Format: Article
Language:English
Published: Інститут математики НАН України 2008
Series:Symmetry, Integrability and Geometry: Methods and Applications
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/148997
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Affine Poisson Groups and WZW Model / C. Klimcík // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 11 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-148997
record_format dspace
fulltext
spelling irk-123456789-1489972019-02-20T01:26:16Z Affine Poisson Groups and WZW Model Klimcík, C. We give a detailed description of a dynamical system which enjoys a Poisson-Lie symmetry with two non-isomorphic dual groups. The system is obtained by taking the q → ∞ limit of the q-deformed WZW model and the understanding of its symmetry structure results in uncovering an interesting duality of its exchange relations. 2008 Article Affine Poisson Groups and WZW Model / C. Klimcík // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 11 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 81T40 http://dspace.nbuv.gov.ua/handle/123456789/148997 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We give a detailed description of a dynamical system which enjoys a Poisson-Lie symmetry with two non-isomorphic dual groups. The system is obtained by taking the q → ∞ limit of the q-deformed WZW model and the understanding of its symmetry structure results in uncovering an interesting duality of its exchange relations.
format Article
author Klimcík, C.
spellingShingle Klimcík, C.
Affine Poisson Groups and WZW Model
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Klimcík, C.
author_sort Klimcík, C.
title Affine Poisson Groups and WZW Model
title_short Affine Poisson Groups and WZW Model
title_full Affine Poisson Groups and WZW Model
title_fullStr Affine Poisson Groups and WZW Model
title_full_unstemmed Affine Poisson Groups and WZW Model
title_sort affine poisson groups and wzw model
publisher Інститут математики НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/148997
citation_txt Affine Poisson Groups and WZW Model / C. Klimcík // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 11 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT klimcikc affinepoissongroupsandwzwmodel
first_indexed 2025-07-12T21:16:31Z
last_indexed 2025-07-12T21:16:31Z
_version_ 1837477387801985024