Hochschild Cohomology Theories in White Noise Analysis
We show that the continuous Hochschild cohomology and the differential Hochschild cohomology of the Hida test algebra endowed with the normalized Wick product are the same.
Збережено в:
Дата: | 2008 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2008
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149012 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Hochschild Cohomology Theories in White Noise Analysis / R. Léandre // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 40 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149012 |
---|---|
record_format |
dspace |
fulltext |
|
spelling |
irk-123456789-1490122019-02-20T01:25:52Z Hochschild Cohomology Theories in White Noise Analysis Léandre, R. We show that the continuous Hochschild cohomology and the differential Hochschild cohomology of the Hida test algebra endowed with the normalized Wick product are the same. 2008 Article Hochschild Cohomology Theories in White Noise Analysis / R. Léandre // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 40 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 53D55; 60H40 http://dspace.nbuv.gov.ua/handle/123456789/149012 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We show that the continuous Hochschild cohomology and the differential Hochschild cohomology of the Hida test algebra endowed with the normalized Wick product are the same. |
format |
Article |
author |
Léandre, R. |
spellingShingle |
Léandre, R. Hochschild Cohomology Theories in White Noise Analysis Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Léandre, R. |
author_sort |
Léandre, R. |
title |
Hochschild Cohomology Theories in White Noise Analysis |
title_short |
Hochschild Cohomology Theories in White Noise Analysis |
title_full |
Hochschild Cohomology Theories in White Noise Analysis |
title_fullStr |
Hochschild Cohomology Theories in White Noise Analysis |
title_full_unstemmed |
Hochschild Cohomology Theories in White Noise Analysis |
title_sort |
hochschild cohomology theories in white noise analysis |
publisher |
Інститут математики НАН України |
publishDate |
2008 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149012 |
citation_txt |
Hochschild Cohomology Theories in White Noise Analysis / R. Léandre // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 40 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT leandrer hochschildcohomologytheoriesinwhitenoiseanalysis |
first_indexed |
2025-07-12T20:52:17Z |
last_indexed |
2025-07-12T20:52:17Z |
_version_ |
1837475867770486784 |