Homogeneous Poisson Structures on Loop Spaces of Symmetric Spaces

This paper is a sequel to [Caine A., Pickrell D., Int. Math. Res. Not., to appear, arXiv:0710.4484], where we studied the Hamiltonian systems which arise from the Evens-Lu construction of homogeneous Poisson structures on both compact and noncompact type symmetric spaces. In this paper we consider l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2008
1. Verfasser: Pickrell, D.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2008
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/149016
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Homogeneous Poisson Structures on Loop Spaces of Symmetric Spaces / D. Pickrell // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:This paper is a sequel to [Caine A., Pickrell D., Int. Math. Res. Not., to appear, arXiv:0710.4484], where we studied the Hamiltonian systems which arise from the Evens-Lu construction of homogeneous Poisson structures on both compact and noncompact type symmetric spaces. In this paper we consider loop space analogues. Many of the results extend in a relatively routine way to the loop space setting, but new issues emerge. The main point of this paper is to spell out the meaning of the results, especially in the SU(2) case. Applications include integral formulas and factorizations for Toeplitz determinants.