Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP(n) Groups

We considered two types of string models: on the Riemmann space of string coordinates with null torsion and on the Riemman-Cartan space of string coordinates with constant torsion. We used the hydrodynamic approach of Dubrovin, Novikov to integrable systems and Dubrovin solutions of WDVV associativi...

Full description

Saved in:
Bibliographic Details
Date:2008
Main Author: Gershun, V.D.
Format: Article
Language:English
Published: Інститут математики НАН України 2008
Series:Symmetry, Integrability and Geometry: Methods and Applications
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/149042
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP(n) Groups / V.D. Gershun // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 30 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149042
record_format dspace
spelling irk-123456789-1490422019-02-20T01:28:36Z Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP(n) Groups Gershun, V.D. We considered two types of string models: on the Riemmann space of string coordinates with null torsion and on the Riemman-Cartan space of string coordinates with constant torsion. We used the hydrodynamic approach of Dubrovin, Novikov to integrable systems and Dubrovin solutions of WDVV associativity equation to construct new integrable string equations of hydrodynamic type on the torsionless Riemmann space of chiral currents in first case. We used the invariant local chiral currents of principal chiral models for SU(n), SO(n), SP(n) groups to construct new integrable string equations of hydrodynamic type on the Riemmann space of the chiral primitive invariant currents and on the chiral non-primitive Casimir operators as Hamiltonians in second case. We also used Pohlmeyer tensor nonlocal currents to construct new nonlocal string equation. 2008 Article Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP(n) Groups / V.D. Gershun // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 30 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 81T20; 81T30; 81T40; 37J35; 53Z05; 22E70 http://dspace.nbuv.gov.ua/handle/123456789/149042 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We considered two types of string models: on the Riemmann space of string coordinates with null torsion and on the Riemman-Cartan space of string coordinates with constant torsion. We used the hydrodynamic approach of Dubrovin, Novikov to integrable systems and Dubrovin solutions of WDVV associativity equation to construct new integrable string equations of hydrodynamic type on the torsionless Riemmann space of chiral currents in first case. We used the invariant local chiral currents of principal chiral models for SU(n), SO(n), SP(n) groups to construct new integrable string equations of hydrodynamic type on the Riemmann space of the chiral primitive invariant currents and on the chiral non-primitive Casimir operators as Hamiltonians in second case. We also used Pohlmeyer tensor nonlocal currents to construct new nonlocal string equation.
format Article
author Gershun, V.D.
spellingShingle Gershun, V.D.
Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP(n) Groups
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Gershun, V.D.
author_sort Gershun, V.D.
title Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP(n) Groups
title_short Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP(n) Groups
title_full Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP(n) Groups
title_fullStr Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP(n) Groups
title_full_unstemmed Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP(n) Groups
title_sort integrable string models in terms of chiral invariants of su(n), so(n), sp(n) groups
publisher Інститут математики НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/149042
citation_txt Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP(n) Groups / V.D. Gershun // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 30 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT gershunvd integrablestringmodelsintermsofchiralinvariantsofsunsonspngroups
first_indexed 2025-07-12T20:57:48Z
last_indexed 2025-07-12T20:57:48Z
_version_ 1837476372459552768
fulltext Symmetry, Integrability and Geometry: Methods and Applications SIGMA 4 (2008), 041, 16 pages Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP (n) Groups? Victor D. GERSHUN ITP, NSC Kharkiv Institute of Physics and Technology, Kharkiv, Ukraine E-mail: gershun@kipt.kharkov.ua Received October 30, 2007, in final form April 22, 2008; Published online May 06, 2008 Original article is available at http://www.emis.de/journals/SIGMA/2008/041/ Abstract. We considered two types of string models: on the Riemmann space of string coordinates with null torsion and on the Riemman–Cartan space of string coordinates with constant torsion. We used the hydrodynamic approach of Dubrovin, Novikov to integrable systems and Dubrovin solutions of WDVV associativity equation to construct new integrable string equations of hydrodynamic type on the torsionless Riemmann space of chiral currents in first case. We used the invariant local chiral currents of principal chiral models for SU(n), SO(n), SP (n) groups to construct new integrable string equations of hydrodynamic type on the Riemmann space of the chiral primitive invariant currents and on the chiral non- primitive Casimir operators as Hamiltonians in second case. We also used Pohlmeyer tensor nonlocal currents to construct new nonlocal string equation. Key words: string; integrable models; Poisson brackets; Casimir operators; chiral currents 2000 Mathematics Subject Classification: 81T20; 81T30; 81T40; 37J35; 53Z05; 22E70 1 Introduction String theory is a very promising candidate for a unified quantum theory of gravity and all the other forces of nature. For quantum description of string model we must have classical solutions of the string in the background fields. String theory in suitable space-time backgrounds can be considered as principal chiral model. The integrability of the classical principal chiral model is manifested through an infinite set of conserved charges, which can form non-Abelian algebra. Any charge from the commuting subset of charges and any Casimir operators of charge algebra can be considered as Hamiltonian in bi-Hamiltonian approach to integrable models. The bi-Hamiltonian approach to integrable systems was initiated by Magri [1]. Two Poisson brackets (PBs) {φa(x), φb(y)}0 = P ab 0 (x, y)(φ), {φa(x), φb(y)}1 = P ab 1 (x, y)(φ) are called compatible if any linear combination of these PBs {∗, ∗}0 + λ{∗, ∗}1 is PB also for arbitrary constant λ. The functions φa(t, x), a = 1, 2, . . . , n are local coordinates on a certain given smooth n-dimensional manifold Mn. The Hamiltonian operators P ab 0 (x, y)(φ), P ab 1 (x, y)(φ) are functions of local coordinates φa(x). It is possible to find such Hamiltonians H0 and H1 which satisfy bi-Hamiltonian condition [2] dφa(x) dt = {φa(x),H0}0 = {φa(x),H1}1, ?This paper is a contribution to the Proceedings of the Seventh International Conference “Symmetry in Nonlinear Mathematical Physics” (June 24–30, 2007, Kyiv, Ukraine). The full collection is available at http://www.emis.de/journals/SIGMA/symmetry2007.html mailto:gershun@kipt.kharkov.ua http://www.emis.de/journals/SIGMA/2008/041/ http://www.emis.de/journals/SIGMA/symmetry2007.html 2 V.D. Gershun where HM = ∫ 2π 0 hM (φ(y))dy, M = 0, 1. Two branches of hierarchies arise under two equations of motion under two different parameters of evolution t0M and tM0 [2] dφa(x) dt01 = {φa(x),H0}1 = ∫ 2π 0 P ab 1 (x, y) ∂h0 ∂φb(y) dy = ∫ 2π 0 Ra c (x, z)P cb 0 (z, y) ∂h0 ∂φb(y) dy, dφa(x) dt10 = {φa(x),H1}0 = ∫ 2π 0 P ab 0 (x, y) ∂h1 ∂φb(y) dy = ∫ 2π 0 (R−1)a c (x, z)P cb 0 (z, y) ∂h0 ∂φb(y) dy. There Ra b (x, y) is a recursion operator and (R−1)a b (x, y) is its inverse Ra c (x, y) = ∫ 2π 0 P ab 1 (x, z)(P0)−1 bc (z, y)dz. The first branch of the hierarchies of dynamical systems has the following form dφa(x) dt0N = ∫ 2π 0 (R(x, y1)· · ·R(yN−1))a cP cb 0 (yN−1, yN ) ∂h0 ∂φb(yN ) dy1· · ·dyN , N = 1, 2, . . . ,∞. The second branch of the hierarchies can be obtained by replacement R → R−1 and t0N → tN0. We will consider only the first branch of the hierarchies. The local PBs of hydrodynamic type were introduced by Dubrovin, Novikov [3, 4] for Hamil- tonian description of equations of hydrodynamics. They were generalized by Ferapontov [5] and Mokhov, Ferapontov [6] to the non-local PBs of hydrodynamic type. The hydrodynamic type systems were considered by Tsarev [8], Maltsev [9], Ferapontov [10], Mokhov [12] (see also [7]), Pavlov [13] (see also [14]), Maltsev, Novikov [15]. The polynomials of local chiral currents were considered by Goldshmidt and Witten [16] (see also [17]). The local conserved chiral charges in principal chiral models were considered by Evans, Hassan, MacKay, Mountain [24]. The tensor nonlocal chiral charges were introduced by Pohlmeyer [26] (see also [27, 28]). The string mod- els of hydrodynamic type were considered by author [18, 19]. In Section 3, the author applied hydrodynamic approach to integrable systems to obtain new integrable string equations. In Sec- tion 4, the author used the nonlocal Pohlmeyer charges to obtain a new string equation in terms of the nonlocal currents. In Section 5, the author applied the local invariant chiral currents to a simple Lie algebra to construct new integrable string equations. 2 String model of principal chiral model type A string model is described by the Lagrangian L = 1 2 ∫ 2π 0 ηαβgab(φ(t, x)) ∂φa(t, x) ∂xα ∂φb(t, x) ∂xβ dx (1) and by two first kind constraints gab(φ(x)) [ ∂φa(x) ∂t ∂φb(x) ∂t + ∂φa(x) ∂x ∂φb(x) ∂x ] ≈ 0, gab(φ(x)) ∂φa(x) ∂t ∂φb(x) ∂x ≈ 0. The target space local coordinates φa(x), a = 1, . . . , n belong to certain given smooth n-dimen- sional manifold Mn with nondegenerate metric tensor gab(φ(x)) = ηµνe µ a(φ(x))eν b (φ(x)), where µ, ν = 1, . . . , n are indices of tangent space to manifold Mn on some point φa(x). The veilbein eµ a(φ) and its inverse ea µ(φ) satisfy the conditions eµ aeb µ = δb a, eµ aeaν = ηµν . Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP (n) Groups 3 The coordinates xα (x0 = t, x1 = x) belong to world sheet with metric tensor gαβ in conformal gauge. The string equations of motion have the form ηαβ [∂αβφa + Γa bc(φ)∂αφb∂βφc] = 0, ∂α = ∂ ∂xα , α = 0, 1, where Γa bc(φ) = 1 2 ea µ [ ∂eµ b ∂φc + ∂eµ c ∂φb ] is the connection. In terms of canonical currents Jµ α(φ) = eµ a(φ)∂αφa the equations of motion have the form ηαβ∂αJµ β (φ(t, x)) = 0, ∂αJµ β (φ)− ∂βJµ α(φ)− Cµ νλ(φ)Jν α(φ)Jλ β (φ) = 0, where Cµ νλ(φ) = ea νe b λ [ ∂eµ a ∂φb − ∂eµ b ∂φa ] is the torsion. The Hamiltonian has the form H = 1 2 ∫ 2π 0 [ηµνJ0µJ0ν + ηµνJ µ 1 Jν 1 ]dx, where J0µ(φ) = ea µ(φ)pa, Jµ 1 (φ) = eµ a ∂ ∂xφa and pa(t, x) = ηµνe µ aeν b ∂ ∂tφ b is the canonical momen- tum. The canonical commutation relations of currents are as follows {J0µ(φ(x)), J0ν(φ(y))} = Cλ µν(φ(x))J0λ(φ(x))δ(x− y), {J0µ(φ(x)), Jν 1 (φ(y))} = Cν µλ(φ(x))Jλ 1 (φ(x))δ(x− y)− 1 2 δν µ ∂ ∂x δ(x− y), {Jµ 1 (φ(x)), Jν 1 (φ(y))} = 0. Let us introduce chiral currents Uµ = ηµνJ0ν + Jµ 1 , V µ = ηµνJ0ν − Jµ 1 The commutation relations of chiral currents are the following {Uµ(φ(x)), Uν(φ(y))} = Cµν λ (φ(x)) [ 3 2 Uλ(φ(x))− 1 2 V λ(φ(x)) ] δ(x− y)− ηµν ∂ ∂x δ(x− y), {Uµ(φ(x)), V ν(φ(y))} = Cµν λ (φ(x))[Uλ(φ(x)) + V λ(φ(x))]δ(x− y), {V µ(φ(x)), V ν(φ(y))} = Cµν λ (φ(x)) [ 3 2 V λ(φ(x))− 1 2 Uλ(φ(x)) ] δ(x− y) + ηµν ∂ ∂x δ(x− y). Equations of motion in light-cone coordinates x± = 1 2 (t± x), ∂ ∂x± = ∂ ∂t ± ∂ ∂x have the form ∂−Uµ = Cµ νλ(φ(x))UνV λ, ∂−V µ = Cµ νλ(φ(x))V νUλ. In the case of the null torsion Cµ νλ = 0, eµ a(φ) = ∂eµ ∂φa , Γa bc(φ) = ea µ ∂2eµ ∂φb∂φc , Rµ νλρ(φ) = 0 the string model is integrable.The Hamiltonian equations of motion under Hamiltonian (1) are described by two independent left and right movers: Uµ(t + x) and V µ(t− x). 4 V.D. Gershun 3 Integrable string models of hydrodynamic type with null torsion We want to construct new integrable string models with Hamiltonians as polynomials of the initial chiral currents Uµ(φ(x)). The PB of chiral currents Uµ(x) coincides with the flat PB of Dubrovin, Novikov {Uµ(x), Uν(y)}0 = −ηµν ∂ ∂x δ(x− y). Let us introduce a local Dubrovin, Novikov PB [3, 4]. It has the form {Uµ(x), Uν(y)}1 = gµν(U(x)) ∂ ∂x δ(x− y)− Γµν λ (U(x)) ∂Uλ(x) ∂x δ(x− y). This PB is skew-symmetric if gµν(U) = gνµ(U) and it satisfies Jacobi identity if Γa bc(U) = Γa cb(U), Ca bc(U) = 0, Ra bcd(U) = 0. In the case of non-zero curvature tensor we must include Weingarten operators into right side of the PB with the step-function sgn (x− y)=( d dx)−1δ(x− y)=ν(x− y) [5, 6]. The PBs {∗, ∗}0 and {∗, ∗}1 are compatible by Magri [1] if the pencil {∗, ∗}0 + λ{∗, ∗}1 is also PB . As a result, Mokhov [12, 11] obtained the compatible pair of PBs P0µν(U)(x, y) = −ηµν ∂ ∂x δ(x− y), P1µν(U)(x, y) = 2 ∂2F (U) ∂Uµ∂Uν ∂ ∂x δ(x− y) + ∂3F (U) ∂Uµ∂Uν∂Uλ ∂Uλ ∂x δ(x− y). The function F (U) satisfies the equation ∂3F (U) ∂Uµ∂Uρ∂Uλ ηλρ ∂3F (U) ∂Uν∂Uσ∂Uρ = ∂3F (U) ∂Uν∂Uρ∂Uλ ηλρ ∂3F (U) ∂Uµ∂Uσ∂Uρ . This equation is WDVV [20, 21] associativity equation and it was obtained in 2D topological field theory. Dubrovin [22, 23] obtained a lot of solutions of WDVV equation. He showed that local fields Uµ(x) must belong Frobenius manifolds to solve the WDVV equation and gave examples of Frobenius structures. Associative Frobenius algebra may be written in the following form ∂ ∂Uµ ∗ ∂ ∂Uν := dλ µν(U) ∂ ∂Uλ . Totally symmetric structure function has the form dµνλ(U) = ∂F (U) ∂Uµ∂Uν∂Uλ , µ, ν, λ = 1, . . . , n and associativity condition( ∂ ∂Uµ ∗ ∂ ∂Uν ) ∗ ∂ ∂Uλ = ∂ ∂Uµ ∗ ( ∂ ∂Uν ∗ ∂ ∂Uλ ) leads to the WDVV equation. Function F (U) is quasihomogeneous function of its variables( dµUµ ∂ ∂Uµ ) F (U) = dF F (U) + AµνU µUν + BµUµ + C, here numbers dµ, dF , Aµν , Bµ, C depend on the type of polynomial function F (U). Here are some Dubrovin examples of solutions of the WDVV equation n = 1, F (U) = U3 1 ; Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP (n) Groups 5 n = 2, F (U) = 1 2 U2 1 U2 + eU2 , d1 = 1, d2 = 2, dF = 2, A11 = 1 (2) and quasihomogeneity condition for n = 2 has the form( d1U1 ∂ ∂U1 + d2 ∂ ∂U2 ) F (U) = dF F (U) + A11U 2 1 . We used local fields Uµ with low indices here for convenience. One of the Dubrovin polynomial solutions is F (U) = 1 2 (U2 1 U3 + U1U 2 2 ) + 1 4 U2 2 U2 3 + 1 60 U5 3 , (3) here d1 = 1, d2 = 3 2 , d3 = 2, dF = 4 and the polynomial function f(U2, U3) = 1 4 U2 2 U2 3 + 1 60 U5 3 is a solution of the additional PDE. In the bi-Hamiltonian approach to an integrable string model we must construct the recursion operator to generate a hierarchy of PBs and a hierarchy of Hamiltonians Rµ ν (x, y) = ∫ 2π 0 Pµλ 1 (x, z)(P−1 0 (z, y))λνdz = 2 ∂2F (U(x)) ∂Uµ(x)∂Uν(x) δ(x− y) + ∂3F (U(x)) ∂Uµ(x)∂Uν(x)∂Uλ(x) ∂Uλ(y) ∂y ν(x− y). The Hamiltonian equation of motion with Hamiltonian H0 is the following H0 = ∫ 2π 0 ηµνU µ(x)Uν(x)dx, ∂Uµ ∂t = ∂Uµ ∂x . First of the new equations of motion under the new time t1 has the form [12] ∂Uµ ∂t1 = ∫ 2π 0 Rµ ν (x, y) ∂Uµ(y) ∂y dy = ηµν d dx ( ∂F (x) ∂Uν ) . (4) This equation of motion can be obtained as Hamiltonian equation with new Hamiltonian H1 H1 = ∫ 2π 0 ∂F (U(x)) ∂Uµ Uµ(x)dx, where F (U) is each of Dubrovin solutions WDVV associativity equation (2), (3). Any system of the following hierarchy [12] ∂Uµ ∂tM = ∫ 2π 0 (R(x, y1) · · ·R(yM−1, yM ))µ ν ∂Uν ∂yM dy1 · · · dyM is an integrable system. As result we obtain chiral currents Uµ(φ(tM , x)) = fµ(φ(tM , x), where fµ(φ) is a solution of the equation of motion. In the case of the Hamiltonian H1 and of the equation of motion (4) we can introduce new currents Jµ 0 (t1, x) = Uµ(t1, x), Jµ 1 (t1, x) = ηµν ∂F (U(t1, x)) ∂Uν . Consequently, we can introduce a new metric tensor and a new veilbein depending of the new time coordinate. The equation for the new metric tensor has the form eµ a(φ(t1, x)) ∂φa(t1, x) ∂x = deµ(φ(t1, x)) dx = ηµν ∂F (f(φ(t1, x))) ∂fν(φ(t1, x)) . 6 V.D. Gershun 4 New string equation in terms of Pohlmeyer tensor nonlocal currents In the case of the flat space Cµ νλ = 0 there exist nonlocal totally symmetric tensor chiral currents called “Pohlmeyer” currents [26, 27, 28] R(M)(U(x)) ≡ R(µ1µ2...µM )(U(x)) = U (µ1(x) ∫ x 0 Uµ2(x1)dx1 · · · ∫ xM−2 0 UµM )(xM−1)dxM−1, where round brackets the mean totally symmetric product of chiral currents Uµ(U). The new Hamiltonians may have the following forms H(M) = 1 2 ∫ 2π 0 R(M)(U(x))d2MR(M)(U(x))dx, where dM ≡ d(µ1µ2...µM ) is totally symmetric invariant constant tensor, which can be constructed from Kronecker deltas. For example R(2) ≡ Rµν(U(x)) = 1 2 [Uµ(x) x∫ 0 Uν(x1)dx1 + Uν(x) ∫ x 0 Uµ(x1)dx1], H(2) = 1 2 ∫ 2π 0 [ Uµ(x)Uµ(x) ∫ x 0 Uν(x1)dx1 ∫ x 0 Uν(x2)dx2 + Uµ(x)Uν(x) ∫ x 0 Uµ(x1)dx1 ∫ x 0 Uν(x2)dx2 ] dx. The Hamiltonian H(2) commutes with the Hamiltonian H(1) = 1 2 ∫ 2π 0 Uµ(x)Uµ(x)dx and it commutes with the Casimir ∫ 2π 0 Uµ(x)dx. The equation of motion under the Hamiltonian H(2) is as follows ∂Uµ(x) ∂t = ∂ ∂x [ Uµ(x) ∫ x 0 Uν(x1)dx1 ∫ x 0 Uν(x2)dx2 + Uν(x) ∫ x 0 Uµ(x1)dx1 ∫ x 0 Uν(x2)dx2 ] − Uν(x)Uν(x) ∫ x 0 Uµ(x1)dx1 − Uµ(x)Uν(x) ∫ x 0 Uν(x1)dx1. In the variables Sµ(x) = ∫ x 0 Uµ(y)dy the latter equation can be rewritten as follows ∂Sµ ∂t = ∂ ∂x (Sµ(SνSν)) + ∫ x 0 Sµ ( Sν ∂2Sν ∂2y ) dy, µ, ν = 1, 2, . . . , n. 5 Integrable string models with constant torsion Let us go back to the commutation relations of chiral currents. Let the torsion Cµ νλ(φ(x)) 6= 0 and Cµνλ = fµνλ be structure constant of s simple Lie algebra. We will consider a string model with the constant torsion in light-cone gauge in target space. This model coincides with the Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP (n) Groups 7 principal chiral model on compact simple Lie group. We cannot divide the motion on right and left mover because of chiral currents ∂−Uµ = fµ νλUνV λ, ∂−V µ = fµ νλV νUλ are not conserved. The correspondent charges are not Casimirs. The present paper was stimulated by paper [24]. Evans, Hassan, MacKay, Mountain (see [24] and references therein) constructed local invariant chiral currents as polynomials of the initial chiral currents of SU(n), SO(n), SP (n) principal chiral models and they found such combination of them that the corresponding charges are Casimir operators of these dynamical systems. Their paper was based on the paper of de Azcarraga, Macfarlane, MacKay, Perez Bueno (see [25] and references therein) about invariant tensors for simple Lie algebras. Let tµ be n ⊗ n traceless hermitian matrix representations of generators Lie algebra [tµ, tν ] = 2ifµνλtλ, Tr(tµtν) = 2δµν . Here is an additional relation for SU(n) algebra {tµ, tν} = 4 n δµν + 2dµνλtλ, µ = 1, . . . , n2 − 1. De Azcarraga et al. gave some examples of invariant tensors of simple Lie algebras and they gave a general method to calculate them. Invariant tensors may be constructed as invariant symmetric polynomials on SU(n) d (M) (µ1...µM ) = 1 M ! STr(tµ1 · · · tµM ), where STr means the completely symmetrized product of matrices and d (M) (µ1...µM ) is the totally symmetric tensor and M = 2, 3, . . . ,∞. Another family of invariant symmetric tensors [29, 30] (see also [25]) called D-family based on the product of the symmetric structure constant dµνλ of the SU(n) algebra is as follows: D (M) (µ1...µM ) = dk1 (µ1µ2 dk1k2 µ3 · · · dkM−2kM−3 µM−2 d kM−3 µM−1µM ), where D (2) µν = δµν ,D (3) µνλ = dµνλ and M = 4, 5, . . . ,∞. Here are n − 1 primitive invariant tensors on SU(n). The invariant tensors for M ≥ n are functions of primitive tensors. The Casimir operators on SU(n) algebra have the form C(M)(t) = dM (µ1...µM )tµ1 · · · tµM . Evans et al. introduced local chiral currents based on the invariant symmetric polynomials on simple Lie groups J (M)(U) = STr(U · · ·U) ≡ STr UM = d(M) µ1...µM Uµ1 · · ·UµM , (5) where U = tµUµ and µ = 1, . . . , n2 − 1 . It is possible to decompose the invariant symmetric chiral currents J (M)(U) into product of the basic invariant chiral currents D(M)(U) D(2)(U) = d(2) µν UµUν = ηµνU µUν , D(3)(U) = dµνλUµUνUλ, D(M)(U(x)) = dk1 µ1µ2 dk1k2 µ3 · · · dkM−2kM−3 µM−2 d kM−3 µM−1µM Uµ1Uµ2 · · ·UµM , where M = 4, 5, . . . ,∞. The author obtained the following expressions for local invariant chiral currents J (M)(U) J (2) = 2D(2), J (3) = 2D(3), J (4) = 2D(4) + 4 n D(2)2, 8 V.D. Gershun J (5) = 2D(5) + 8 n D(2)D(3), J (6) = 2D(6) + 4 n D(3)2 + 8 n D(2)D(4) + 8 n2 D(2)3, J (7) = 2D(7) + 8 n D(3)D(4) + 8 n D(2)D(5) + 24 n2 D(2)2D(3), J (8) = 2D(8) + 4 n D(4)2+ 8 n D(3)D(5)+ 8 n D(2)D(6)+ 24 n2 D(2)D(3)2+ 24 n2 D(2)2D(4)+ 16 n3 D(2)4, J (9) = 2D(9) + 8 n D(4)D(5) + 8 n D(3)D(6) + 8 n D(2)D(7) + 8 n2 D(3)3 + 48 n2 D(2)D(3)D(4) + 24 n2 D(2)2D(5) + 64 n3 D(2)3D(3). Both families of invariant chiral currents J (M)(U(x)) and D(M)(U(x)) satisfy the conservation equations ∂−J (M)(U(x)) = 0, ∂−D(M)(U(x)) = 0. The commutation relations of invariant chiral currents J (M)(U(x)) show that these currents are not densities of dynamical Casimir operators for SU(n) group. Therefore, we will not consider these currents in the following. We considered abasic family of invariant chiral currents D(M)(U) and we proved that the invariant chiral currents D(M)(U) form closed algebra under canonical PB and corresponding charges are dynamical Casimir operators. The commutation relations of invariant chiral currents D(M)(U(x)) and D(N)(U(y)) for M,N = 2, 3, 4 and for M = 2, N = 2, 3, . . . ,∞ are as follows {D(M)(x), D(N)(y)} = −MND(M+N−2)(x) ∂ ∂x δ(x− y) − MN(N − 1) M + N − 2 ∂D(M+N−2)(x) ∂x δ(x− y). The commutation relations for M ≥ 5, N ≥ 3 are as follows {D(5)(x), D(3)(y)} = −[12D(6)(x) + 3D(6,1)(x)] ∂ ∂x δ(x− y) − 1 3 ∂ ∂x [12D(6)(x) + 3D(6,1)(x)]δ(x− y), {D(5)(x), D(4)(y)} = −[16D(7)(x) + 4D(7,1)(x)] ∂ ∂x δ(x− y) − 3 7 ∂ ∂x [16D(7)(x) + 4D(7,1)(x)]δ(x− y), {D(6)(x), D(3)(y)} = −[12D(7)(x) + 6D(7,1)(x)] ∂ ∂x δ(x− y) − 2 7 ∂ ∂x [12D(7)(x) + 6D(7,1)(x)]δ(x− y), {D(5)(x), D(5)(y)} = −[16D(8)(x) + 8D(8,1)(x) + D(8,2)(x)] ∂ ∂x δ(x− y) − 1 2 ∂ ∂x [16D(8)(x) + 8D(8,1)(x) + D(8,2)(x)]δ(x− y), {D(6)(x), D(4)(y)} = −[16D(8)(x) + 8D(8,3)(x)] ∂ ∂x δ(x− y) − 3 8 ∂ ∂x [16D(8)(x) + 8D(8,3)(x)]δ(x− y), {D(7)(x), D(3)(y)} = −[12D(8)(x) + 6D(8,1)(x) + 3D(8,3)(x)] ∂ ∂x δ(x− y) − 1 4 ∂ ∂x [12D(8)(x) + 6D(8,1)(x) + 3D(8,3)(x)]δ(x− y), {D(8)(x), D(3)(y)} = −[12D(9)(x) + 6D(9,1)(x) + 6D(9,2)(x)] ∂ ∂x δ(x− y) Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP (n) Groups 9 − 2 9 ∂ ∂x [12D(9)(x) + 6D(9,1)(x) + 6D(9,2)(x)]δ(x− y), {D(7)(x), D(4)(y)} = −[16D(9)(x) + 8D(9,2)(x) + 4D(9,3)(x)] ∂ ∂x δ(x− y) − 1 3 ∂ ∂x [16D(9)(x) + 8D(9,2)(x) + 4D(9,3)(x)]δ(x− y), {D(6)(x), D(5)(y)} = −[16D(9)(x) + 4D(9,1)(x) + 8D(9,2)(x) + 2D(9,4)(x)] ∂ ∂x δ(x− y) − 4 9 ∂ ∂x [16D(9)(x) + 4D(9,1)(x) + 8D(9,2)(x) + 2D(9,4)(x)]δ(x− y), {D(9)(x), D(3)(y)} = −[12D(10)(x) + 6D(10,1)(x) + 6D(10,2)(x) + 3D(10,3)(x)] ∂ ∂x δ(x− y) − 1 5 ∂ ∂x [12D(10)(x) + 6D(10,1)(x) + 6D(10,2)(x) + 3D(10,3)(x)]δ(x− y), {D(8)(x), D(4)(y)} = −[16D(10)(x) + 8D(10,2)(x) + 8D(10,4)(x)] ∂ ∂x δ(x− y) − 3 10 ∂ ∂x [16D(10)(x) + 8D(10,2)(x) + 8D(10,4)(x)]δ(x− y), {D(7)(x), D(5)(y)} = −[16D(10)(x) + 8D(10,3)(x) + 4D(10,1)(x) + 4D(10,4)(x) + 2D(10,5)(x) + D(10,6)(x)] ∂ ∂x δ(x− y) − 2 5 ∂ ∂x [16D(10)(x) + 8D(10,3)(x) + 4D(10,1)(x) + 4D(10,4)(x) + 2D(10,5)(x) + D(10,6)(x)]δ(x− y), {D(6)(x), D(6)(y)} = −[16D(10)(x) + 16D(10,2)(x) + 4D(10,7)(x)] ∂ ∂x δ(x− y) − 1 2 ∂ ∂x [16D(10)(x) + 16D(10,2)(x) + 4D(10,7)(x)]δ(x− y). The new dependent invariant chiral currents D(6,1), D(7,1), D(8,1) − D(8,3), D(9,1) − D(9,4), D(10,1) −D(10,7) (see Appendix A) have the form D(6,1) = dk µνd l λρd n σϕdklnUµUνUλUρUσUϕ, D(7,1) = dk µνd l λρd n σϕdnm τ dklmUµUνUλUρUσUϕU τ , D(8,1) = [dk µνd kl λ dln ρ ][dm σϕ][dp τθ]d nmpUµUνUλUρUσUϕU τU θ, D(8,2) = [dk µν ][d l λρ][d n σϕ][dm τθ]d klpdnmpUµUνUλUρUσUϕU τU θ, D(8,3) = [dk µνd kl λ ][dn ρσdnm ϕ ][dp τθ]d lmpUµUνUλUρUσUϕU τU θ, D(9,1) = [dk µνd kl λ dln ρ dnm σ ][dp ϕτ ][d r θω]dmprUµUνUλUρUσUϕU τU θUω, D(9,2) = [dk µνd kl λ dln ρ ][dm σϕdmp τ ][dr θω]dnprUµUνUλUρUσUϕU τU θUω, D(9,3) = [dk µνd kl λ ][dn ρσdnm ϕ ][dp τθd pr ω ]dlmrUµUνUλUρUσUϕU τU θUω, D(9,4) = [dk µνd kl λ ][dn ρσ][dm ϕτ ][d p θω]dlnrdmprUµUνUλUρUσUϕU τU θUω, D(10,1) = [dk µνd kl λ dln ρ dnm σ dmp ϕ ][dr τθ][d s ωβ]dprsUµUνUλUρUσUϕU τU θUωUβ , D(10,2) = [dk µνd kl λ dln ρ dnm σ ][dp ϕτd pr θ ][ds ωβ]dmrsUµUνUλUρUσUϕU τU θUωUβ, D(10,3) = [dk µνd kl λ dln ρ ][dm σϕdmp ϕ dpr τ ][ds ωβ]dnrsUµUνUλUρUσUϕU τU θUωUβ, D(10,4) = [dk µνd kl λ dln ρ ][dm σϕdmp τ ][dr θωdrs β ]dnpsUµUνUλUρUσUϕU τU θUωUβ, D(10,5) = [dk µνd kl λ dln ρ ][dm σϕ][dp τθ][d r ωβ]dnmsdprsUµUνUλUρUσUϕU τU θUωUβ , 10 V.D. Gershun D(10,6) = [dk µνd kl λ ][dn ρσdnm ϕ ][dp τθ][d r ωβ]dlmsdprsUµUνUλUρUσUϕU τU θUωUβ , D(10,7) = [dk µνd kl λ ][dn ρσ]dm ϕ ][dmp τθ ][dr ωβ]dlnsdprsUµUνUλUρUσUϕU τU θUωUβ . Let us apply the hydrodynamic approach to integrable string models with constant tor- sion. In this case we must consider the conserved primitive chiral currents D(M)(U(x)), (M = 2, 3, . . . , n− 1) as local fields of the Riemmann manifold. The non-primitive local charges of in- variant chiral currents with M ≥ n form the hierarchy of new Hamiltonians in the bi-Hamiltonian approach to integrable systems. The commutation relations of invariant chiral currents are local PBs of hydrodynamic type. The invariant chiral currents D(M) with M ≥ 3 for the SU(3) group can be obtained from the following relation dklndkmp + dklmdknp + dklpdknm = 1 3 (δlnδmp + δlmδnp + δlpδnm). The corresponding invariant chiral currents for SU(3) group have the form D(2N) = 1 3N−1 (ηµνU µUν)N = 1 3N−1 D(2)N , D(2N+1) = 1 3N−1 (ηµνU µUν)N−1dklnUkU lUn = 1 3N−1 D(2)N−1D(3). The invariant chiral currents D(2), D(3) are local coordinates of the Riemmann manifold M2. The local charges D(2N), N ≥ 2 form a hierarchy of Hamiltonians. The new nonlinear equations of motion for chiral currents are as follows ∂D(k)(U(x)) ∂tN = { D(k)(U(x)), ∫ 2π 0 D(2)N (U(y))dy } , k = 2, 3, N = 2, . . . ,∞. ∂D(2)(U(x)) ∂tN = −2(2N − 1) ∂D(2)N (U(x)) ∂x , ∂D(3)(U(x)) ∂tN = −6ND(3)(U(x)) ∂D(2)N−1(U(x)) ∂x − 2ND(2)N−1(U(x)) ∂D(3)(U(x)) ∂x . The construction of integrable equations with SU(n) symmetries for n ≥ 4 has difficulties in reduction of non-primitive invariant currents to primitive currents. The similar method of construction of chiral currents for SO(2l + 1) = Bl, SP (2l) = Cl groups was used by Evans et al. [24] on the base of symmetric invariant tensors of de Azcarraga et al. [25]. In the defining representation these group generators corresponding to algebras tµ satisfy the rules [tµ, tν ] = 2ifλ µνtλ, Tr(tµtν) = 2δµν , tµη = −ηttµ, where η is a Euclidean or symplectic structure. The symmetric tensor structure constants for these groups were introduced through com- pletely symmetrized product of three generators of corresponding algebras t(µtνtλ) = vρ µνλtρ, where vµνλρ is a totally symmetric tensor. The basic invariant symmetric tensors have the form [25] V (2) µν = δµν , V (2N) (µ1µ2...µ2N−1µ2N ) = vν1 (µ1µ2µ3 vν1ν2 µ4µ5 · · · vν2N−3 µ2N−2µ2N−1µ2N ), N = 2, . . . ,∞. Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP (n) Groups 11 The invariant chiral currents J (2N) (5) coincide with the basis invariant chiral currents V (2N) J (2N) = 2V (2N) µ1...µ2N Uµ1 · · ·Uµ2N . The commutation relations of invariant chiral currents are PBs of hydrodynamic type {J (M)(x), J (N)(y)} = −MNJ (M+N−2)(x) ∂ ∂x δ(x− y) − MN(N − 1) M + N − 2 ∂J (M+N−2)(x) ∂x δ(x− y). (6) The commuting charges of these invariant chiral currents are dynamical Casimir operators on SO(2l + 1), SP (2l). The metric tensor of Riemmann space of invariant chiral currents is as follows gMN (J(x)) = −MN(M + N − 2)J (M+N−2)(x). The commutation relations (6) coincide with commutation relations, which was obtained by Evans at al. [24]. We used relations for new symmetric invariant tensors V (2N,1) (µ1...µ2N ) (see Appendix B), which we obtained during calculation PB (6) vk (µ1µ2µ3 vl µ4µ5µ6 vn µ7µ8µ9 vkln µ10) = V (10) (µ1...µ10), vk (µ1µ2µ3 vl µ4µ5µ6 vn µ7µ8µ9 vm µ10µ11µ12)v klnm = V (12) (µ1...µ12), vk (µ1µ2µ3 vl µ4µ5µ6 vn µ7µ8µ9 vm µ10µ11µ12 vklp µ13 vnmp µ14) = V (14) (µ1...µ14). Appendix A The new dependent invariant chiral currents and the new dependent totally symmetric invariant tensors for SU(N) group can be obtained under different order of calculation of trace of the pro- duct of the generators of SU(n) algebra. Let us mark the matrix product of two generators tµ, tν in round brackets (tµtν) = 2 n δµν + (dk µν + ifk µν)tk. (7) The expression of invariant chiral currents JM (U) depends on the position of the matrix product of two generators in the general list of generators. For example J (6) = Tr[t(tt)(tt)t] = 2D(6) + 4 n D(3)2 + 8 n D(2)D(4) + 8 n2 D(2)3, J (6) = Tr[(tt)(tt)(tt)] = 2D(6,1) + 12 n D(2)D(4) + 8 n2 D(2)3, J (7) = Tr[t(tt)t(tt)t] = 2D(7) + 8 n D(3)D(4) + 8 n2 D(2)D(5) + 24 n2 D(2)2D(3), J (7) = Tr[(tt)(tt)(tt)t] = 2D(7,1) + 4 n D(3)D(4) + 12 n2 D(2)D(5) + 24 n2 D(2)2D(3), J (8) = Tr[t(tt)tt(tt)t] = 2D(8) + 4 n D(4)2 + 8 n D(3)D(5) + 8 n D(2)D(6) + 24 n2 D(2)D(3)2 + 24 n2 D(2)2D(4) + 16 n3 D(2)4, 12 V.D. Gershun J (8) = Tr[(tt)(tt)t(tt)t] = 2D(8,1) + 4 n D(4)2 + 4 n D(3)D(5) + 24 n2 D(2)D(3)2 + 12 n D(2)D(6) + 24 n2 D(2)2D(4) + 16 n3 D(2)4, J (8) = Tr[(tt)(tt)(tt)(tt)] = 2D(8,2) + 4 n D(4)2 + 16 n D(2)D(6,1) + 32 n2 D(2)2D(4) + 16 n3 D(2)4, J (8) = Tr[t(tt)(tt)(tt)t] = 2D(8,3) + 12 n D(2)D(6) + 8 n D(3)D(5) + 24 n2 D(2)2D(4) + 24 n2 D(2)D(3)2 + 16 n D(2)4, J (9) = Tr[t(tt)ttt(tt)t] = 2D(9) + 8 n D(4)D(5) + 8 n D(3)D(6) + 8 n D(2)D(7) + 8 n2 D(3)3 + 48 n2 D(2)D(3)D(4) + 24 n2 D(2)2D(5) + 64 n3 D(2)3D(3), J (9) = Tr[t(tt)tt(tt)(tt)] =  2D(9,1) + 4 n D(4)D(5) + 4 n D(2)D(7) + 4 n D(2)D(7,1) + 8 n D(3)D(6,1) + 32 n2 D(2)D(3)D(4) + 32 n2 D(2)2D(5) + 64 n3 D(2)3D(3), · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2D(9,4) + 4 n D(2)D(7) + 4 n D(2)D(7,1) + 12 n D(3)D(6,1) + 32 n2 D(2)D(3)D(4) + 32 n2 D(2)2D(5) + 64 n3 D(2)3D(3), J (9) = Tr[t(tt)t(tt)t(tt)] =  2D(9,2) + 4 n D(4)D(5) + 8 n D(3)D(6) + 8 n D(2)D(7) + 4 n D(2)D(7,1) + 8 n2 D(3)3 + 40 n2 D(2)D(3)D(4) + 32 n2 D(2)2D(5) + 64 n3 D(2)3D(3), · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2D(9,3) + 8 n D(2)D(7) + 4 n D(2)D(71) + 12 n D(3)D(6) + 8 n D(3)3 + 40 n2 D(2)D(3)D(4) + 32 n2 D(2)2D(5) + 64 n3 D(2)3D(3), where t = tµUµ and two variants of two last expressions for J (9)(U) were obtained from two variants of expression for J (6)(U) during calculation J (9)(U). Because the result of calculation does not depend on the order of calculation, we can obtain relations between new invariant chiral currents and basic invariant currents D(M)(U) D(6,1) = D(6) + 2 n D(3)2 − 2 n D(2)D(4), D(7,1) = D(7) + 4 n D(3)D(4) − 4 n D(2)D(5), D(81) = D(8) + 2 n D(3)D(5) − 2 n D(2)D(6), D(8,2) = D(8) + 4 n D(3)D(5) − 4 n D(2)D(6) − 4 n2 D(2)D(3)2 + 4 n2 D(2)2D(4), D(8,3) = D(8) + 2 n D(4)2 − 2 n D(2)D(6), D(9,1) = D(9) + 2 n D(4)D(5) − 4 n2 D(3)3 + 8 n2 D(2)D(3)D(4) + 4 n2 D(2)2D(5), Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP (n) Groups 13 D(9,2) = D(9) + 2 n D(4)D(5) − 2 n D(2)D(7) − 4 n2 D(2)D(3)D(4) + 4 n2 D(2)2D(5), D(9,3) = D(9) + 4 n D(4)D(5) − 2 n D(2)D(7) − 2 n D(3)D(6) − 4 n2 D(2)D(3)D(4) + 4 n2 D(2)2D(5), D(9,4) = D(9) + 4 n D(4)D(5) − 2 n D(3)D(6) − 8 n2 D(3)3 + 12 n2 D(2)D(3)D(4) + 4 n2 D(2)2D(5). Hence we can obtain the new relations for symmetric tensors dk (µνd l λρd n σϕ)d kln = dk (µνd kl λ dln ρ dn σϕ) + 2 n d(µνλdρσϕ) − 2 n δ(µνd k λρd k σϕ), dk (µνd l λρd n σϕdnm τ) dklm = dk (µνd kl λ dln ρ dnm σ dm ϕτ) + 4 n d(µνλdk ρσdk ϕτ) − 4 n δ(µνd k λρd kl σ dl ϕτ), dk (µνd l λρd n σϕdnm τ dmp τ) dklp = dk (µνd kl λ dln ρ dnm σ dmp ϕ dp τθ) + 4 n d(µνλdk ρσdkl ϕ dl τθ) − 2 n δ(µνd k λρd kl σ dln ϕ dn τθ), dk (µνd l λρd n σϕdm τθ)d klpdnmp = dk (µνd kl λ dln ρ dnm σ dmp ϕ dp τθ) + 4 n d(µνλdk ρσdkl ϕ dl τθ) − 4 n δ(µνd k λρd kl σ dln ϕ dn τθ) − 4 n2 δ(µνdλρσdϕτθ) + 4 n2 δ(µνδλρd k σϕdk τθ). It is possible to obtain similar relations for invariant symmetric tensors of ninth order. The commutation relations of chiral currents in terms of the basic invariant currents are as follows {D(5)(x), D(3)(y)} = − [ 15D(6)(x) + 6 n D(3)2(x)− 6 n D(2)(x)D(4)(x) ] ∂ ∂x δ(x− y) − 1 3 ∂ ∂x [ 15D(6)(x) + 6 n D(3)2(x)− 6 n D(2)(x)D(4)(x) ] δ(x− y), {D(5)(x), D(4)(y)} = − [ 20D(7)(x) + 16 n D(3)(x)D(4)(x)− 16 n D(2)(x)D(5)(x) ] ∂ ∂x δ(x− y) − 3 7 ∂ ∂x [ 20D(7)(x)+ 16 n D(3)(x)D(4)(x)− 16 n D(2)(x)D(5)(x) ] δ(x− y), {D(5)(x), D(5)(y)} = − [ 25D(8)(x) + 36 n D(3)(x)D(5)(x)− 20 n D(2)(x)D(6)(x) − 4 n D(2)(x)D(3)2(x) + 4 n2 D(2)2(x)D(4)(x) ] ∂ ∂x δ(x− y) − 1 2 ∂ ∂x [ 25D(8)(x) + 36 n D(3)(x)D(5)(x)− 20 n D(2)(x)D(6)(x) − 4 n D(2)(x)D(3)2(x) + 4 n2 D(2)2(x)D(4)(x) ] , {D(6)(x), D(4)(y)} = − [ 24D(8) + 12 n D(4)2 − 12 n D(2)D(6) ] ∂ ∂x δ(x− y) − 3 8 ∂ ∂x [ 24D(8) + 12 n D(4)2 − 12 n D(2)D(6) ] δ(x− y), {D(7)(x), D(3)(y)} = − [ 21D(8) + 6 n D(4)2 + 12 n D(3)D(5) − 18 n D(2)D(6) ] ∂ ∂x δ(x− y) − 1 4 ∂ ∂x [ 21D(8) + 6 n D(4)2 + 12 n D(3)D(5) − 18 n D(2)D(6) ] δ(x− y), {D(8)(x), D(3)(y)} = − [ 24D(9) − 12 n D(2)D(7) + 24 n D(4)D(5) − 24 n2 D(3)3 + 24 n2 D(2)D(3)D(4) + 48 n2 D(2)2D(5) ] ∂ ∂x δ(x− y)− 2 9 ∂ ∂x [ 24D(9) − 12 n D(2)D(7) 14 V.D. Gershun + 24 n D(4)D(5)− 24 n2 D(3)3+ 24 n2 D(2)D(3)D(4)+ 48 n2 D(2)2D(5) ] δ(x− y), {D(7)(x), D(4)(y)} = − [ 28D(9) − 8 n D(3)D(6) − 24 n D(2)D(7) + 32 n D(4)D(5) − 48 n2 D(2)D(3)D(4) + 48 n2 D(2)2D(5) ] ∂ ∂x δ(x− y) − 1 3 ∂ ∂x [ 28D(9) − 8 n D(3)D(6) − 24 n D(2)D(7) + 32 n D(4)D(5) − 48 n2 D(2)D(3)D(4) + 48 n2 D(2)2D(5) ] δ(x− y), {D(6)(x), D(5)(y)} = − [ 30D(9) − 4 n D(3)D(6) − 12 n D(2)D(7) + 32 n D(4)D(5) − 32 n2 D(3)3 + 24 n2 D(2)D(3)D(4) + 56 n2 D(2)2D(5) ] ∂ ∂x δ(x− y) − 4 9 ∂ ∂x [ 30D(9) − 4 n D(3)D(6) − 12 n D(2)D(7) + 32 n D(4)D(5) − 32 n2 D(3)3 + 24 n2 D(2)D(3)D(4) + 56 n2 D(2)2D(5) ] δ(x− y). Appendix B The invariant chiral currents J (2N) and V (2N) and the new dependent totally symmetric invariant tensors for SO(2l + 1), SP (2l) groups can be obtained under different order of calculation of trace of the product of the generators of corresponding algebras. Let us mark the matrix product of three generators tµ in round brackets (t(µtνtλ)) = vµνλρtρ. A different position of this triplet inside of J2N produces different expressions for V 2N J (10) = Tr[((t1t2t3)t4(t5t6t7)(t8t9t10))]U1 · · ·U10 = 2vk 123v kl 45v ln 67v n 8910U1 · · ·U10 = 2V (10), J (10) = Tr[((t1t2t3)(t4t5t6)(t7t8t9)t10)]U1 · · ·U10 = 2vk 123v l 456v n 789v kln 10 U1 · · ·U10 = 2V (10,1), J (12) = Tr[(t1(t2t3t4)t5(t6t7t8)t9(t10t11t12))]U1 · · ·U12 = 2vk 123v kl 45v ln 67v nm 89 vm 101112U1 · · ·U12 = 2V (12), J (12) = Tr[((t1t2t3)(t4t5t6)(t7t8t9)(t10t11t12))]U1 · · ·U12 = 2vk 123v l 456v n 789v m 101112v klnmU1 · · ·U12 = 2V (12,1), J (14) = Tr[((t1t2t3)t4(t5t6t7)t8(t9t10t11)(t12t13t14))]U1 · · ·U14 = 2vk 123v kl 45v ln 67v nm 89 vmp 1011v p 121314U1 · · ·U14 = 2V (14), J (14) = Tr[((t1t2t3)(t4t5t6)(t7t8t9)(t10t11t12)t13t14)]U1 · · ·U14 = 2vk 123v l 456v n 789v m 101112v klp 13 vnmp 14 U1 · · ·U14 = 2V (14,1). Here we introduced the short notation tµk = tk, Uµk = Uk and vk µlµnµm =vk lnm. New invariant chiral tensors do not lead to new invariant chiral currents. Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP (n) Groups 15 Acknowledgments The author would like to thank J.A. de Azcarraga for the stimulating discussion about non- primitive invariant tensors on simple Lie algebras. References [1] Magri F., A simple model of the integrable Hamiltonian equation, J. Math. Phys. 19 (1978), 1156–1162. [2] Okubo S., Das A., The integrability condition for dynamical systems, Phys. Lett. B 209 (1988), 311–314. [3] Dubrovin B.A., Novikov S.P., Hamiltonian formalism of one-dimensional systems of hydrodynamic type and the Bogolyubov–Whitham averaging method, Dokl. Akad. Nauk SSSR 270 (1983), 781–785 (in Russian). [4] Dubrovin B.A., Novikov S.P., Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory, Russian Math. Surveys 44 (1989), no. 6, 35–124. [5] Ferapontov E.V., Differential geometry of nonlocal Hamiltonian of hydrodynamic type, Funct. Anal. Appl. 25 (1991), 195–204. [6] Mokhov O.I., Ferapontov E.V., Nonlocal Hamiltonian operators of hydrodynamic type that are connected with metrics of constant curvature, Russian Math. Surveys 45 (1990), no. 3, 218–219. [7] Mokhov O.I., Symplectic and Poisson structures on loop spaces of smooth manifolds, and integrable systems, Russian Math. Surveys 53 (1998), no. 3, 515–622. [8] Tsarev S.P., Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type, Dokl. Akad. Nauk SSSR 282 (1985), 534–537. [9] Maltsev A.Ya., On the compatible weakly nonlocal Poisson brackets of hydrodynamic type, Int. J. Math. Math. Sci. 32 (2002), 587–614, nlin.SI/0111015. [10] Ferapontov E.V., Nonlocal Hamiltonian operators of hydrodynamic type: differential geometry and appli- cations, Amer. Math. Soc. Transl. (2) 170 (1995), 33–58. [11] Mokhov O.I., The Liouville canonical form of compatible nonlocal Poisson brackets of hydrodynamic type, and integrable hierarchies, Funct. Anal. Appl. 37 (2003), no 2, 103–113, math.DG/0201223. [12] Mokhov O.I., Compatible Dubrovin–Novikov Hamiltonian operators, Lie derivative and integrable systems of hydrodynamic type, Theoret. and Math. Phys. 133 (2002), 1557–1564, math.DG/0201281. [13] Pavlov M.V., Multi-Hamiltonian structures of the Whitham equations, Russian Acad. Sci. Dokl. Math. 50 (1995), no 2, 220–223. [14] Pavlov M.V., Integrability of Egorov systems of hydrodynamic type, Theoret. and Math. Phys. 150 (2007), no. 2, 225–243, nlin.SI/0606017. [15] Maltsev A.Ya., Novikov S.P., On the local systems Hamiltonian in the weakly non-local Poisson brackets, Phys. D 156 (2001), 53–80, nlin.SI/0006030. [16] Goldschmidt Y.Y., Witten E., Conservation laws in some two-dimensional models, Phys. Lett. B 91 (1980), 392–396. [17] Aref’eva I.Ya., Kulish P.P., Nissimov E R., Pacheva S.J., Infinite set of conservation laws of the quantum chiral field in 2D spacetime, preprint LOMI E-I-1978, unpublished. [18] Gershun V.D., Integrable string models of hydrodynamic type, J. Kharkov University, Phys. Ser. Nucl., Part., Fields 657 (2005), no. 1 (26), 109–113. [19] Gershun V.D., Integrable string models and sigma-models of hydrodynamic type in terms of invariant chiral currents, Problems of Atomic Science and Technology 3(1) (2007), Part 1, 16–21. [20] Dijkgraaf R., Witten E., Mean field theory, topological field theory, and multi-matrix models, Nuclear Phys. B 342 (1990), 486–522. [21] Dijkgraaf R., Verlinde H., Verlinde E., Topological strings in d < 1, Nuclear Phys. B 352 (1991), 59–86. [22] Dubrovin B.A., Geometry of 2D topological field theories, Lecture Notes in Math. 1620 (1996), 120–348, hep-th/9407018. [23] Dubrovin B., Zhang Y., Bi-Hamiltonian hierarchies in 2D topological field theory at one-loop approximation, Comm. Math. Phys. 198 (1998), 311–361, hep-th/9712232. [24] Evans J.M., Hassan M., MacKay N.J., Mountain A.J., Local conserved charges in principal chiral models, Nuclear Phys. B 561 (1999), 385–412, hep-th/9902008. http://arxiv.org/abs/nlin.SI/0111015 http://arxiv.org/abs/math.DG/0201223 http://arxiv.org/abs/math.DG/0201281 http://arxiv.org/abs/nlin.SI/0606017 http://arxiv.org/abs/nlin.SI/0006030 http://arxiv.org/abs/hep-th/9407018 http://arxiv.org/abs/hep-th/9712232 http://arxiv.org/abs/hep-th/9902008 16 V.D. Gershun [25] de Azcarraga J.A., Macfarlane A.J., Mountain A.J., Perez Bueno J.C., Invariant tensors for simple groups, Nuclear Phys. B 510 (1998), 657–687, physics/9706006. [26] Pohlmeyer K., A group-theoretical approach to the quantization of the free relativistic closed string, Phys. Lett. B 119 (1982), 100–104. [27] Meusburger C., Rehren K.-H., Algebraic quantization of the closed bosonic string, Comm. Math. Phys. 237 (2003), 69-85, math-ph/0202041. [28] Thiemann T., The LQS string-loop quantum gravity quantization of string theory. I. Flat target space, Classical Quantum Gravity 23 (2006), 1923–1970, math-ph/0401172. [29] Klein A., Invariant operators of the unitary unimodular group in n dimensions, J. Math. Phys. 4 (1963), 1283–1284. [30] Sudbery A., Some aspects of chiral [δ]u(3)× [δ]u(3) symmetry in hadron dynamics, PhD Thesis, Cambridge University, 1970. Sudbery A., Computer-friendly d-tensor identities for SU(n), J. Phys. A: Math. Gen. 23 (1990), L705–L710. http://arxiv.org/abs/physics/9706006 http://arxiv.org/abs/math-ph/0202041 http://arxiv.org/abs/math-ph/0401172 1 Introduction 2 String model of principal chiral model type 3 Integrable string models of hydrodynamic type with null torsion 4 New string equation in terms of Pohlmeyer tensor nonlocal currents 5 Integrable string models with constant torsion Appendix A Appendix B References