Applications of Group Analysis to the Three-Dimensional Equations of Fluids with Internal Inertia

Group classification of the three-dimensional equations describing flows of fluids with internal inertia, where the potential function W = W(ρ,ρ·), is presented. The given equations include such models as the non-linear one-velocity model of a bubbly fluid with incompressible liquid phase at small v...

Full description

Saved in:
Bibliographic Details
Date:2008
Main Authors: Siriwat, P., Meleshko, S.V.
Format: Article
Language:English
Published: Інститут математики НАН України 2008
Series:Symmetry, Integrability and Geometry: Methods and Applications
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/149043
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Applications of Group Analysis to the Three-Dimensional Equations of Fluids with Internal Inertia / P. Siriwat, S.V. Meleshko // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 22 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Group classification of the three-dimensional equations describing flows of fluids with internal inertia, where the potential function W = W(ρ,ρ·), is presented. The given equations include such models as the non-linear one-velocity model of a bubbly fluid with incompressible liquid phase at small volume concentration of gas bubbles, and the dispersive shallow water model. These models are obtained for special types of the function W(ρ,ρ·). Group classification separates out the function W(ρ,ρ·) at 15 different cases. Another part of the manuscript is devoted to one class of partially invariant solutions. This solution is constructed on the base of all rotations. In the gas dynamics such class of solutions is called the Ovsyannikov vortex. Group classification of the system of equations for invariant functions is obtained. Complete analysis of invariant solutions for the special type of a potential function is given.