Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems

In this paper we present an overview of the connection between completely integrable systems and the background geometry of the flow. This relation is better seen when using a group-based concept of moving frame introduced by Fels and Olver in [Acta Appl. Math. 51 (1998), 161-213; 55 (1999), 127-208...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2008
1. Verfasser: Beffa, G.M.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2008
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/149050
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems / G.M. Beffa // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 51 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149050
record_format dspace
fulltext
spelling irk-123456789-1490502019-02-20T01:28:40Z Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems Beffa, G.M. In this paper we present an overview of the connection between completely integrable systems and the background geometry of the flow. This relation is better seen when using a group-based concept of moving frame introduced by Fels and Olver in [Acta Appl. Math. 51 (1998), 161-213; 55 (1999), 127-208]. The paper discusses the close connection between different types of geometries and the type of equations they realize. In particular, we describe the direct relation between symmetric spaces and equations of KdV-type, and the possible geometric origins of this connection. 2008 Article Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems / G.M. Beffa // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 51 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 37K25; 53A55 http://dspace.nbuv.gov.ua/handle/123456789/149050 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper we present an overview of the connection between completely integrable systems and the background geometry of the flow. This relation is better seen when using a group-based concept of moving frame introduced by Fels and Olver in [Acta Appl. Math. 51 (1998), 161-213; 55 (1999), 127-208]. The paper discusses the close connection between different types of geometries and the type of equations they realize. In particular, we describe the direct relation between symmetric spaces and equations of KdV-type, and the possible geometric origins of this connection.
format Article
author Beffa, G.M.
spellingShingle Beffa, G.M.
Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Beffa, G.M.
author_sort Beffa, G.M.
title Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems
title_short Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems
title_full Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems
title_fullStr Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems
title_full_unstemmed Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems
title_sort geometric realizations of bi-hamiltonian completely integrable systems
publisher Інститут математики НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/149050
citation_txt Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems / G.M. Beffa // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 51 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT beffagm geometricrealizationsofbihamiltoniancompletelyintegrablesystems
first_indexed 2025-07-12T20:59:28Z
last_indexed 2025-07-12T20:59:28Z
_version_ 1837476315319500800