Generator of low pressure volume plasma with plasma electron source
In the current paper the results of a study of a volumetric high-current low-pressure discharge with a plasma electron source are presented. The source was made on the basis of a hollow cathode with a gas-magnetron ignition of the discharge and an auxiliary arc discharge for the cathode heating...
Gespeichert in:
Datum: | 2018 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2018
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/149073 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Generator of low pressure volume plasma with plasma electron source / V.A. Khomich, A.V. Ryabtsev, V.G. Nazarenko // Вопросы атомной науки и техники. — 2018. — № 6. — С. 308-311. — Бібліогр.: 11 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149073 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1490732019-02-20T01:28:42Z Generator of low pressure volume plasma with plasma electron source Khomich, V.A. Ryabtsev, A.V. Nazarenko, V.G. Низкотемпературная плазма и плазменные технологии In the current paper the results of a study of a volumetric high-current low-pressure discharge with a plasma electron source are presented. The source was made on the basis of a hollow cathode with a gas-magnetron ignition of the discharge and an auxiliary arc discharge for the cathode heating up to thermionic emission temperature. The gas-discharge plasma was generated at a working gas pressure 0.1...1 Pa and hade an electron concentration of 10¹⁰ ...(5×10¹¹) cm⁻³ in a volume of 0.1 m³. Also the volt-ampere characteristics, the ion current density distribution in the working volume are presented for different discharge conditions. The plasma generator may be used in the processes of ion-plasma technologies (oxidation, nitration in non-hydrogen media), as well as in energy-saving technologies of combined ion-plasma processing of structural materials. An improved electron plasma source with a hollow cathode will allow one to work in a wide range of discharge currents and also will be served for a large operating life of devices. Haведено результати дослідження об’ємного дугового розряду низького тиску з плазмовим джерелом електронів, виконаним на основі порожнистого катода з газомагнетронним запалюванням розряду і допоміжним дуговим розрядом для розігріву порожнистого катоду до термоемісійних температур. Газорозрядна плазма, утворювана при тисках робочого газу 0,1…1 Па, має концентрацію електронів 10¹⁰ ...(5×10¹¹) см⁻³ в об’ємі 0,1 м³. Надано вольт-амперні характеристики та залежності розподілу густини іонного струму в робочому об’ємі від умов розряду. Плазмогенератор може бути використаний в процесах іоно-плазмових технологій (оксидування, азотування в безводневих середовищах), а також в енергозберігаючих технологіях комбінованої іонно-плазмової обробки конструкційних матеріалів. Вдосконалене плазмове джерело електронів з порожнистим катодом дозволить працювати в широкому діапазоні розрядних струмів і з більшим робочим ресурсом пристрою. Приведены результаты исследования объемного сильноточного разряда низкого давления с плазменным источником электронов, выполненным на основе полого катода с газомагнетронным зажиганием разряда и вспомогательным дуговым разрядом для разогрева катода до термоэмиссионных температур. Газоразрядная плазма, генерируемая при давлении рабочего газа 0,1…1 Па, имеет концентрацию электронов 10¹⁰ ...(5×10¹¹) см⁻³ в объеме 0,1 м³. Представлены вольт-амперные характеристики, зависимости распределения плотности ионного тока в рабочем объеме от условий разряда. Плазмогенератор может быть использован в процессах ионно-плазменных технологий (оксидирования, азотирования в безводородных средах), a также в энергосберегающих технологиях комбинированной ионно-плазменной обработки конструкционных материалов. Усовершенствованный плазменный источник электронов с полым катодом позволит работать в широком диапазоне разрядных токов и с большим рабочим ресурсом устройства. 2018 Article Generator of low pressure volume plasma with plasma electron source / V.A. Khomich, A.V. Ryabtsev, V.G. Nazarenko // Вопросы атомной науки и техники. — 2018. — № 6. — С. 308-311. — Бібліогр.: 11 назв. — англ. 1562-6016 PACS: 52.80.Mg http://dspace.nbuv.gov.ua/handle/123456789/149073 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии |
spellingShingle |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии Khomich, V.A. Ryabtsev, A.V. Nazarenko, V.G. Generator of low pressure volume plasma with plasma electron source Вопросы атомной науки и техники |
description |
In the current paper the results of a study of a volumetric high-current low-pressure discharge with a plasma
electron source are presented. The source was made on the basis of a hollow cathode with a gas-magnetron ignition
of the discharge and an auxiliary arc discharge for the cathode heating up to thermionic emission temperature. The
gas-discharge plasma was generated at a working gas pressure 0.1...1 Pa and hade an electron concentration of
10¹⁰ ...(5×10¹¹) cm⁻³
in a volume of 0.1 m³. Also the volt-ampere characteristics, the ion current density distribution
in the working volume are presented for different discharge conditions. The plasma generator may be used in the
processes of ion-plasma technologies (oxidation, nitration in non-hydrogen media), as well as in energy-saving
technologies of combined ion-plasma processing of structural materials. An improved electron plasma source with a
hollow cathode will allow one to work in a wide range of discharge currents and also will be served for a large
operating life of devices. |
format |
Article |
author |
Khomich, V.A. Ryabtsev, A.V. Nazarenko, V.G. |
author_facet |
Khomich, V.A. Ryabtsev, A.V. Nazarenko, V.G. |
author_sort |
Khomich, V.A. |
title |
Generator of low pressure volume plasma with plasma electron source |
title_short |
Generator of low pressure volume plasma with plasma electron source |
title_full |
Generator of low pressure volume plasma with plasma electron source |
title_fullStr |
Generator of low pressure volume plasma with plasma electron source |
title_full_unstemmed |
Generator of low pressure volume plasma with plasma electron source |
title_sort |
generator of low pressure volume plasma with plasma electron source |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2018 |
topic_facet |
Низкотемпературная плазма и плазменные технологии |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149073 |
citation_txt |
Generator of low pressure volume plasma with plasma electron source / V.A. Khomich, A.V. Ryabtsev, V.G. Nazarenko // Вопросы атомной науки и техники. — 2018. — № 6. — С. 308-311. — Бібліогр.: 11 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT khomichva generatoroflowpressurevolumeplasmawithplasmaelectronsource AT ryabtsevav generatoroflowpressurevolumeplasmawithplasmaelectronsource AT nazarenkovg generatoroflowpressurevolumeplasmawithplasmaelectronsource |
first_indexed |
2025-07-12T21:01:25Z |
last_indexed |
2025-07-12T21:01:25Z |
_version_ |
1837476453053104128 |
fulltext |
ISSN 1562-6016. ВАНТ. 2018. №6(118)
308 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2018, № 6. Series: Plasma Physics (118), p. 308-311.
GENERATOR OF LOW PRESSURE VOLUME PLASMA WITH PLASMA
ELECTRON SOURCE
V.A. Khomich1, A.V. Ryabtsev1, V.G. Nazarenko2
1Institute of Physics of National Academy of Science of Ukraine, Kyiv Ukraine
E-mail: khomich@iop.kiev.ua, ryabtsev@iop.kiev.ua;
2Gas Institute of National Academy of Science of Ukraine, Kyiv, Ukraine
In the current paper the results of a study of a volumetric high-current low-pressure discharge with a plasma
electron source are presented. The source was made on the basis of a hollow cathode with a gas-magnetron ignition
of the discharge and an auxiliary arc discharge for the cathode heating up to thermionic emission temperature. The
gas-discharge plasma was generated at a working gas pressure 0.1...1 Pa and hade an electron concentration of
1010...(5×1011) cm-3 in a volume of 0.1 m3. Also the volt-ampere characteristics, the ion current density distribution
in the working volume are presented for different discharge conditions. The plasma generator may be used in the
processes of ion-plasma technologies (oxidation, nitration in non-hydrogen media), as well as in energy-saving
technologies of combined ion-plasma processing of structural materials. An improved electron plasma source with a
hollow cathode will allow one to work in a wide range of discharge currents and also will be served for a large
operating life of devices.
PACS: 52.80.Mg
INTRODUCTION
At present, methods of plasma modification of the
structural materials surface (for example nitration and
oxidation) are intensively developed using arc as plasma
sources [1]. At the same time, unlike the glow
discharge, the arc sources provided more flexible
control of the technological parameters for the nitration
(oxidation) process, such as less ion spraying of the
processed materials and possibility to process items of
complex shape with holes of different diameters. Being
most energy-efficient, these methods allow generating
volumetric plasma with parameters (electron
concentration in plasma 1010...(5×1011) cm-3) which
ensure acceptable heating and surface cleaning rates
during ion-plasma processing of materials.
Existing plasma generators based on an arc
discharge with a cold [2] or incandescent cathode [3, 4],
are not without shortcomings. In the first case, there are
a large number of micro droplets of cathode material in
the plasma stream. The separation of these droplets
leads to a decrease in the total process efficiency. In the
second case, the incandescent cathode has a limited
lifetime which riche up to tens of hours in an inert gas
environment and to tens of minutes in an atmosphere of
active gases, as a result of oxidation, as well as
sputtering by ions that come from the discharge gap. In
connection with this, the development of reliable
energy-efficient plasma generators with a long life
resource does not cease to be relevant.
CONSTRUCTION AND PRINCIPLE OF
ACTION
This paper presents the design and main
characteristics of a plasma generator based on a non-
self-sustaining low-pressure arc discharge with a plasma
electron source on the basis of a hollow cathode with
gas-magnetron ignition of the discharge and an auxiliary
arc AC discharge for cathode heating to thermionic
emission temperature. A volumetric (main) arc
discharge was ignited between the plasma electron
source and the anode located in the vacuum (working)
chamber. In general, all plasma generators with
continuous action based on an arc discharge at low
pressure have considerable differences only in the
design of their cathode assembly.
To create an arc discharge in plasma generators,
cathodes are used that provide a current from a few to
hundreds amperes. The choice of material and geometry
of such cathodes have great influences on such
important properties of the plasma generator as the
service life, the time required for the source switching
on, operation stability, input power and so on. The
requirements become higher if there are active gases
(O2, N2, H2, CH4, etc.) in the process of plasma
treatment.
In the arc discharge mode, plasma sources of
electrons based on a hollow thermionic emission
cathode [5] are the most reliable and durable. They may
operate not only in high but also in medium vacuum, at
pressure up to 10 Pa. One may define the source of
electrons with a plasma emitter as such electric
discharge device that generates plasma from which
electrons are injected into the working space, where in
turn volumetric (technological) plasma is formed.
The main difficulty in working with a thermionic
emission hollow cathode is ensuring of the discharge
initiation reliable, since the ignition voltage is
substantially higher than the voltage of the stable
discharge operation in a continuous regime. To do this,
it is necessary to create special devices for ignition and
heating of the hollow cathode to thermionic emission
temperature. There are several methods for heating the
hollow cathode to such temperature. In one of the
methods, a resistive heating of the hollow cathode is
used. In this case a voltage is applied to the ends the
cathode and while an electric current passes through it is
heated up to the thermionic emission temperature [6].
mailto:khomich@iop.kiev.ua
ISSN 1562-6016. ВАНТ. 2018. №6(118) 309
This design is complex and insufficiently reliable, since
it requires a large current (more than 100 A) to be
supplied to the cathode. In another design, the hollow
cathode is heated to thermionic emission temperatures
due to an auxiliary high-frequency discharge [7]. This
requires a separate high-frequency generator, which
complicates the design of the cathode node and
significantly increases its cost.
As it was shown in [8], the most reliable is the
method in which the initiation of a hollow cathode
discharge and heating to thermionic emission
temperature is provided by a gas-magnetron discharge
in crossed electric and magnetic fields [9]. But due to
the fact that the working voltage of the magnetron
discharge exceeds 250 V, the main drawback of this
design is the intensive sputtering of the hollow cathode
as a result of bombardment it by ions with energy
greater than 200 eV. This reduces the lifetime of the
electron source. To improve the plasma source of
electrons with hollow cathode, its design was
modernized [10], which allowed to work in a wide
range of discharge currents and increased the operating
life time of the device. In the plasma source of
electrons, the hollow cathode is made of two electrically
independent parts, each of which is connected to the AC
power supply via an isolating transformer. This makes it
possible to warm the hollow cathode to thermionic
emission temperature due to the arc discharge of the
alternating current.
Fig. 1 shows the experimental setup of a plasma
generator with a plasma electron source for ion-plasma
technologies. The plasma source of electrons was
connected to the vacuum chamber 1 and consisted of a
cylindrical anode 2 with a hollow cathode on its axis.
The cathode was composed of two parts 3 and 4 (thin-
walled tantalum tubes with a diameter of 4 mm and a
total length of 60 mm), with a gap of 1...2 mm between
them, and cathode reflectors 5, 6 attached to their ends.
A magnetic system 7 consisted of permanent annular
magnets, with a magnetic field on the B axis ≥ 0.07 T,
and coaxially covered the anode. The upper reflector 5
hade a hole through which an inert gas (e.g. argon) was
fed to the cathode. The aperture 8 in the bottom
reflector 6 was used for extraction of the electron-
plasma flow 9 into the vacuum chamber. To measure
the plasma parameters (ion saturation current), a one-
way flat probe 11 was introduced into the side opening
of the vacuum chamber.
The gas-discharge device operated as follows. After
evacuating the working chamber (the total volume
100 liters) to a pressure of 10-3 Pa, an inert gas (argon)
was fed through a hollow cathode into the cylindrical
anode. Smooth adjustment of the gas flow rate was
realized by the leak valve in the range of
0.05...0.5 cm3/s. The gas pressure in the volume of the
working chamber was set within 0.1...1 Pa. The gas-
magnetron discharge in the crossed electric and
magnetic fields between the cylindrical anode and the
parts of the hollow cathode was ignited by the PS-1
power supply unit. The ignition voltage of the gas-
magnetron discharge did not exceed 800 V. Electrons
under the action of crossed fields rotated around the
cathode, which led to an increase in the probability of
electron collisions with inert gas atoms, ionization of
the gas and discharge combustion. Due to ion
bombardment, parts of the hollow cathode were heated.
The more the power of the magnetron discharge, the
more the cathode was heated. The voltage and current of
the magnetron discharge could be set within the limits
of Udis = 250…550 V and Idis = 1…3 A respectively.
Fig. 2 shows the calculated temperature of the hollow
cathode (for our tantalum tube size), depending on the
heating power. When the temperature of the hollow
cathode reached 2300 K (dashed boundary in Fig. 2), a
minimum thermionic emission (with current density
0.2 A/cm2) was sufficient to provide ignition of the
auxiliary arc discharge between the cathode parts. Due
to the applied alternating voltage (an idle voltage was
160 V) from the power supply unit PS-2 through the
Fig. 1. The scheme of the experimental setup:
1 – vacuum chamber; 2 – anode of the plasma electron
source; 3 and 4 – hollow cathode (consists of two
parts); 5 and 6 ‒ the cathode reflectors; 7 – magnetic
system; 8 – emission aperture; 9 – plasma of the
volumetric discharge; 10 – anode of the main
discharge; 11 – probe
Fig. 2. Dependence of the temperature of the hollow
cathode on the heating power
310 ISSN 1562-6016. ВАНТ. 2018. №6(118)
insolating transformer between the parts of the hollow
cathode, an AC arc was ignited and as a result of its
power both parts of the hollow cathode were heated up
to higher temperature.
EXPERIMENTAL RESULTS
The current-voltage characteristic of the effective
voltage and current for the auxiliary arc discharge
(between two halves of the hollow cathode) and the
dependence of the power introduced into the discharge
on the current are shown in Fig. 3 (operating frequency
of power supply was 50 Hz, argon consumption –
0.15 cm2/s). In practice all AC discharge power went to
heating parts of the hollow cathode. With a discharge
voltage of 35...60 V and current in the range of 5...20 A,
the parts of the cathode were heated up to a temperature
of 2800 K. It provided the level of electron current
emission from the cathode more than 10 A/cm2. By
injecting charged particles from the hollow cathode into
the discharge gap, a reliable arc ignition and stable
combustion of a volume arc discharge in the vacuum
chamber between the anode of the main discharge 10
and parts of the hollow cathode from the discharge
power supply unit PS-3 (see Fig. 1) was ensured. After
this, the auxiliary magnetron discharge was turned off to
prevent intensive sputtering of the hollow cathode. It is
well known that the sputtering mainly occurs due to ion
bombardment of the cathode material (self-sputtering).
The cathode sputtering rate is proportional to the current
strength and the square of the discharge voltage, and is
practically independent of the kind of gas fed into the
discharge gap [11]. In our cases the reduction of the
discharge voltage below 100 V led to a sharp decrease
in the cathode sputtering speed, which increased the
durability of the cathode and significantly reduced the
flow of pollutants. The combustion voltage of the
auxiliary arc discharge between the parts of the hollow
cathode was less than 55 V, and the magnetron
discharge was more than 250 V. Thus, the intensity of
sputtering in the arc discharge decreased, which
considerably increased the durability of the plasma
electron source. Fig. 4 shows the volt-ampere
characteristics of a volume arc discharge with argon as
plasma forming gas (flow rate 0.15 cm3/s) for the case
of the switched-off (curve 1) and activated (curve 2)
auxiliary arc discharge for heating of the hollow
cathode. In case when the auxiliary discharge was
switched off, the volume arc discharge changed over to
the mode of self-heating hollow cathode, where its
heating was produced due to ion bombardment from the
plasma situated inside the cathode cavity. In this case,
the burning voltage of the discharge increased and the
cathode sputtering also increased. In the case of an
auxiliary arc discharge, the burning voltage of the main
discharge was less, and the discharge itself had a high
stability, especially at a high current (more than 30 A).
In Fig. 5 the spatial distributions of the density of the
ion saturation current per probe are shown for two
distances from the cathode. The probe was disposed in
the cross section at a distance of 90 and 180 mm from
the cathode. If the parts under treatment are not large in
size and located along the perimeter of the working
chamber, then the ion-plasma effect will not be
inhomogeneous on them by more than 25 %. The
heterogeneity of the parts can be reduced by using a
planetary drive.
The plasma generator based on a non-self-sustaining
low-pressure arc discharge was tested with argon and
nitrogen as plasma-forming gases (the reactive gas was
fed directly to the working chamber) with a discharge
operating current in the range 5...50 A. The results of
testing of the plasma generator with a plasma electron
source showed high reliability, stable operation in all
range of operating current and an increase in the service
life of the device as a whole.
CONCLUSIONS
A plasma generator based on a volume low-pressure
arc discharge with a plasma electron source made on the
basis of a hollow cathode with a gas-magnetron ignition
of the discharge and an auxiliary arc discharge for the
Fig. 3. 1 – Volt-ampere characteristic of the auxiliary
arc discharge (between the two halves of the hollow
cathode);
2 – the dependence of the power introduced into the
discharge
Fig. 4. Volt-ampere characteristics of volumetric arc
discharge:
1 – auxiliary discharge is turned off; 2 – auxiliary discharge
is switched on (discharge current is 12 A
ISSN 1562-6016. ВАНТ. 2018. №6(118) 311
heating of the hollow cathode to thermionic emission
temperature was developed. This device allows one to
work with current up to tens of amperes in the plasma
environment of reactive gases (O2, N2, H2, etc.) with
large service life duration. The volumetric plasma
generator can be used in energy-saving technologies, for
example, in nitration, oxidation, coating and other
surface modification processes.
REFERENCES
1. A.A. Andreev, V.M. Shulaev, L.P. Sablev. Nitriding
of steels in a low pressure gas arc discharge // PSE.
2006, v. 4, № 3, 4, p. 191-197.
2. P.M. Shchanin, N.N. Koval, Yu.Kh. Akhmadeev,
S.V. Grigoriev. Cold arc discharge with hollow cathode
in crossed electric and magnetic fields // Jour. of Tech.
Phys. 2004, v. 74, № 5, p. 24-30.
3. D.P. Borisov, N.N. Koval, P.M. Shchanin.
Volumetric plasma generation by arc discharge with a
heated cathode // Univ. News. Physics. 1994, № 3,
p. 115-120 (in Russian).
4. Patent US № 4197175. Method and apparatus for
evaporating materials in a vacuum coating plant / H.
Daxinger, E. Moll, 1980.
5. E.M. Oks. Electron sources with a plasma cathode:
physics, technology, applications. Tomsk: “NTL”, 2005,
216 p.
6. G. Sidenius. The High temperature Hollow cathode
Ion Source // Nucl. Instrum. And Methods. 1965, № 6,
p.19-22.
7. L.M. Lidsky. Highly Ionized Hollow Cathode
Discharge // J. Appl. Phys. 1962, № 33, p. 2490.
8. O.G. Didyk, V.A. Zhovtianskii, V.G. Nazarenko,
V.O.Khomych. Plasma modification of the surface of
structural materials // Ukr. Phys. Jour. 2008, v. 53, № 5,
p. 481-487.
9. V.A. Gruzdev, Yu.E. Kreindel, O.E. Troian. The
discharge with a cold hollow cathode initiation by gas
magnetron // Jour. Of Tech. Phys 1980, v. 50, № 10,
p. 2108-2111 (in Russian).
10. Patent for utility model of Ukraine № 106156, № 8.
Plasma source of electrons / V.O. Khomich,
V.G. Nazarenko, 2016.
11. A.S. Pasjuk, Yu.P. Tretjakov, V. Stanku. Cathode
sputtering in an arc ion source // Instruments and
Experimental Technique. 1965, № 3, p. 42-45.
Article received 23.10.2018
ГЕНЕРАТОР ОБЪЕМНОЙ ПЛАЗМЫ НИЗКОГО ДАВЛЕНИЯ С ПЛАЗМЕННЫМ ИСТОЧНИКОМ
ЭЛЕКТРОНОВ
В.А. Хомич, А.В. Рябцев, В.Г. Назаренко
Приведены результаты исследования объемного сильноточного разряда низкого давления с плазменным
источником электронов, выполненным на основе полого катода с газомагнетронным зажиганием разряда и
вспомогательным дуговым разрядом для разогрева катода до термоэмиссионных температур. Газоразрядная
плазма, генерируемая при давлении рабочего газа 0,1…1 Па, имеет концентрацию электронов
1010…(5·1011) см-3 в объеме 0,1 м3. Представлены вольт-амперные характеристики, зависимости
распределения плотности ионного тока в рабочем объеме от условий разряда. Плазмогенератор может быть
использован в процессах ионно-плазменных технологий (оксидирования, азотирования в безводородных
средах), a также в энергосберегающих технологиях комбинированной ионно-плазменной обработки
конструкционных материалов. Усовершенствованный плазменный источник электронов с полым катодом
позволит работать в широком диапазоне разрядных токов и с большим рабочим ресурсом устройства.
ГЕНЕРАТОР ОБ'ЄМНОЇ ПЛАЗМИ НИЗЬКОГО ТИСКУ З ПЛАЗМОВИМ ДЖЕРЕЛОМ
ЕЛЕКТРОНІВ
В.О. Хомич, А.В. Рябцев, В.Г. Назаренко
Haведено результати дослідження об’ємного дугового розряду низького тиску з плазмовим джерелом
електронів, виконаним на основі порожнистого катода з газомагнетронним запалюванням розряду і
допоміжним дуговим розрядом для розігріву порожнистого катоду до термоемісійних температур.
Газорозрядна плазма, утворювана при тисках робочого газу 0,1…1 Па, має концентрацію електронів
1010…(5·1011) см-3 в об’ємі 0,1 м3. Надано вольт-амперні характеристики та залежності розподілу густини
іонного струму в робочому об’ємі від умов розряду. Плазмогенератор може бути використаний в процесах
іоно-плазмових технологій (оксидування, азотування в безводневих середовищах), а також в
енергозберігаючих технологіях комбінованої іонно-плазмової обробки конструкційних матеріалів.
Вдосконалене плазмове джерело електронів з порожнистим катодом дозволить працювати в широкому
діапазоні розрядних струмів і з більшим робочим ресурсом пристрою.
Fig. 5. Spatial dependences of the density of the ion
saturation current on the probe for various distances
from the cathode (argon gas, pressure in the working
chamber – 0.4 Pa, volume (main) discharge current –
34 A, discharge voltage – 39 V, auxiliary discharge
current – 12 A)
|