Deformation Quantization of Poisson Structures Associated to Lie Algebroids

In the present paper we explicitly construct deformation quantizations of certain Poisson structures on E*, where E → M is a Lie algebroid. Although the considered Poisson structures in general are far from being regular or even symplectic, our construction gets along without Kontsevich's forma...

Full description

Saved in:
Bibliographic Details
Date:2009
Main Authors: Neumaier, N., Waldmann, S.
Format: Article
Language:English
Published: Інститут математики НАН України 2009
Series:Symmetry, Integrability and Geometry: Methods and Applications
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/149144
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Deformation Quantization of Poisson Structures Associated to Lie Algebroids / N. Neumaier, S. Waldmann // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 44 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:In the present paper we explicitly construct deformation quantizations of certain Poisson structures on E*, where E → M is a Lie algebroid. Although the considered Poisson structures in general are far from being regular or even symplectic, our construction gets along without Kontsevich's formality theorem but is based on a generalized Fedosov construction. As the whole construction merely uses geometric structures of E we also succeed in determining the dependence of the resulting star products on these data in finding appropriate equivalence transformations between them. Finally, the concreteness of the construction allows to obtain explicit formulas even for a wide class of derivations and self-equivalences of the products. Moreover, we can show that some of our products are in direct relation to the universal enveloping algebra associated to the Lie algebroid. Finally, we show that for a certain class of star products on E* the integration with respect to a density with vanishing modular vector field defines a trace functional.