Intertwining Symmetry Algebras of Quantum Superintegrable Systems
We present an algebraic study of a kind of quantum systems belonging to a family of superintegrable Hamiltonian systems in terms of shape-invariant intertwinig operators, that span pairs of Lie algebras like (su(n),so(2n)) or (su(p,q),so(2p,2q)). The eigenstates of the associated Hamiltonian hierarc...
Saved in:
Date: | 2009 |
---|---|
Main Authors: | Calzada, J.A., Negro, J., del Olmo, M.A. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2009
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/149167 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Intertwining Symmetry Algebras of Quantum Superintegrable Systems / J.A. Calzada, J. Negro, M.A. del Olmo // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 29 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Solutions of the Dirac Equation in a Magnetic Field and Intertwining Operators
by: Contreras-Astorga, A., et al.
Published: (2012) -
Symmetry and Intertwining Operators for the Nonlocal Gross-Pitaevskii Equation
by: Lisok, A.L., et al.
Published: (2013) -
Tools for Verifying Classical and Quantum Superintegrability
by: Kalnins, E.G., et al.
Published: (2010) -
Classical and Quantum Superintegrability of Stäckel Systems
by: Błaszak, M., et al.
Published: (2017) -
Superintegrable Extensions of Superintegrable Systems
by: Chanu, C.M., et al.
Published: (2012)