q-Wakimoto Modules and Integral Formulae of Solutions of the Quantum Knizhnik-Zamolodchikov Equations

Matrix elements of intertwining operators between q-Wakimoto modules associated to the tensor product of representations of Uq(^sl2) with arbitrary spins are studied. It is shown that they coincide with the Tarasov-Varchenko's formulae of the solutions of the qKZ equations. The result generaliz...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2009
Автор: Kuroki, K.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2009
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149178
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:q-Wakimoto Modules and Integral Formulae of Solutions of the Quantum Knizhnik-Zamolodchikov Equations / K. Kuroki // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149178
record_format dspace
spelling irk-123456789-1491782019-02-20T01:27:17Z q-Wakimoto Modules and Integral Formulae of Solutions of the Quantum Knizhnik-Zamolodchikov Equations Kuroki, K. Matrix elements of intertwining operators between q-Wakimoto modules associated to the tensor product of representations of Uq(^sl2) with arbitrary spins are studied. It is shown that they coincide with the Tarasov-Varchenko's formulae of the solutions of the qKZ equations. The result generalizes that of the previous paper [Kuroki K., Nakayashiki A., SIGMA 4 (2008), 049, 13 pages]. 2009 Article q-Wakimoto Modules and Integral Formulae of Solutions of the Quantum Knizhnik-Zamolodchikov Equations / K. Kuroki // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 13 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 81R50; 20G42; 17B69 http://dspace.nbuv.gov.ua/handle/123456789/149178 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Matrix elements of intertwining operators between q-Wakimoto modules associated to the tensor product of representations of Uq(^sl2) with arbitrary spins are studied. It is shown that they coincide with the Tarasov-Varchenko's formulae of the solutions of the qKZ equations. The result generalizes that of the previous paper [Kuroki K., Nakayashiki A., SIGMA 4 (2008), 049, 13 pages].
format Article
author Kuroki, K.
spellingShingle Kuroki, K.
q-Wakimoto Modules and Integral Formulae of Solutions of the Quantum Knizhnik-Zamolodchikov Equations
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Kuroki, K.
author_sort Kuroki, K.
title q-Wakimoto Modules and Integral Formulae of Solutions of the Quantum Knizhnik-Zamolodchikov Equations
title_short q-Wakimoto Modules and Integral Formulae of Solutions of the Quantum Knizhnik-Zamolodchikov Equations
title_full q-Wakimoto Modules and Integral Formulae of Solutions of the Quantum Knizhnik-Zamolodchikov Equations
title_fullStr q-Wakimoto Modules and Integral Formulae of Solutions of the Quantum Knizhnik-Zamolodchikov Equations
title_full_unstemmed q-Wakimoto Modules and Integral Formulae of Solutions of the Quantum Knizhnik-Zamolodchikov Equations
title_sort q-wakimoto modules and integral formulae of solutions of the quantum knizhnik-zamolodchikov equations
publisher Інститут математики НАН України
publishDate 2009
url http://dspace.nbuv.gov.ua/handle/123456789/149178
citation_txt q-Wakimoto Modules and Integral Formulae of Solutions of the Quantum Knizhnik-Zamolodchikov Equations / K. Kuroki // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 13 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT kurokik qwakimotomodulesandintegralformulaeofsolutionsofthequantumknizhnikzamolodchikovequations
first_indexed 2025-07-12T21:35:16Z
last_indexed 2025-07-12T21:35:16Z
_version_ 1837478574485929984
fulltext Symmetry, Integrability and Geometry: Methods and Applications SIGMA 5 (2009), 027, 21 pages q-Wakimoto Modules and Integral Formulae of Solutions of the Quantum Knizhnik–Zamolodchikov Equations Kazunori KUROKI Department of Mathematics, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan E-mail: ma306012@math.kyushu-u.ac.jp Received October 31, 2008, in final form February 25, 2009; Published online March 07, 2009 doi:10.3842/SIGMA.2009.027 Abstract. Matrix elements of intertwining operators between q-Wakimoto modules associa- ted to the tensor product of representations of Uq(ŝl2) with arbitrary spins are studied. It is shown that they coincide with the Tarasov–Varchenko’s formulae of the solutions of the qKZ equations. The result generalizes that of the previous paper [Kuroki K., Nakayashiki A., SIGMA 4 (2008), 049, 13 pages]. Key words: free field; vertex operator; qKZ equation; q-Wakimoto module 2000 Mathematics Subject Classification: 81R50; 20G42; 17B69 1 Introduction In [8] the integral formulae of the quantum Knizhnik–Zamolodchikov (qKZ) equations [3] for the tensor product of spin 1/2 representation of Uq(sl2) arising from q-Wakimoto modules have been studied. The formulae are identified with those of Tarasov–Varchenko’s formulae. The aim of this paper is to generalize the results to the case of tensor product of representations with arbitrary spins. It is known that certain matrix elements of intertwining operators between q-Wakimoto modu- les satisfy the qKZ equation [3, 10]. Thus it is interesting to compute those matrix elements explicitly. In [5] two kinds of intertwining operators were introduced, type I and type II. They were defined according as the position of evaluation representations. In the application to the study of solvable lattice models two types of operators have their own roles. Type I and type II operators correspond to states and particles respectively. The properties of traces exhibit very different structure. However as far as the matrix elements are concerned they are not expected to be very different [5]. In [8] a computation of matrix elements has been carried out in the case of type I opera- tor and the tensor product of 2-dimensional vector representation of Uq(sl2) generalizing the result of [10] (see the previous paper [8]). In this paper we compute matrix elements for the composition of the type I intertwining operators [5] associated to finite dimensional irreducible representations of Uq(sl2). We perform certain multidimensional integrals and sums explicitly. It is shown that the formulae thus obtained coincide with those of Matsuo [9], Tarasov and Varchenko [13] without the term corresponding to the deformed cycles. To obtain actual matrix elements of intertwining operators it is necessary to specify certain contours of integration associated to screening operators. We do not consider this problem in this paper. To find integration contours describing each composition of intertwining operators is an important open problem. We also remark that the formulae for type II intertwining operators are not obtained in this paper. The computation of them looks quite different from that for mailto:ma306012@math.kyushu-u.ac.jp http://dx.doi.org/10.3842/SIGMA.2009.027 http://dx.doi.org/10.3842/SIGMA.2008.049 2 K. Kuroki type I case as opposed to the expectation. It is interesting to find the way to get a similar result for matrix elements in the case of type II operators. The paper is organized in the following manner. The construction of the solutions of the qKZ equations due to Tarasov and Varchenko is reviewed in Section 2. In Section 3 a free field construction of intertwining operator is reviewed. The formulae for the matrix elements of some operators are calculated in Section 4. The main theorem of this paper is stated in this section. In Section 5 the proof of the main theorem is given. The evaluation representation of Uq(ŝl2) is explicitly described in Appendix A. Appendix B gives the explicit form of the R-matrix in special cases. The explicit forms of the operators which appear in Section 3 are given in Appendix C. Appendix D contains the list of OPE’s which is necessary to derive the integral formulae. 2 Tarasov–Varchenko’s formulae We review Tarasov–Varchenko’s formula for solutions of the qKZ equations. In this paper we assume that q is a complex number such that |q| < 1. We mainly follow the notation of [13]. For a nonnegative integer l let V (l) = ⊕l i=0 Cv (l) i be the l + 1 dimensional irreducible Uq(sl2)-module and V (l) z = V (l)⊗C[z, z−1] the evaluation representation of Uq(ŝl2) on V (l). The action of Uq(ŝl2) on V (l) z is given in Appendix A. Let l1 and l2 be nonnegative integers and Rl1,l2(z) ∈ End(V (l1) ⊗ V (l2)) the trigonometric quantum R-matrix uniquely determined by the following conditions: (i) PRl1,l2(z) commutes with Uq(ŝl2), (ii) PRl1,l2(z) ( v (l1) 0 ⊗ v (l2) 0 ) = v (l2) 0 ⊗ v (l1) 0 , where P : V (l1) ⊗ V (l2) → V (l2) ⊗ V (l1) is a linear map given by P (v ⊗ w) = w ⊗ v. The explicit form of the R-matrix is given in Appendix B in case l1 = 1 or l2 = 1. We set R̂li,lj (z) = ρli,lj (z)R̃li,lj (z), R̃li,lj (z) = (Cli ⊗ Clj )Rli,lj (z)(Cli ⊗ Clj ), ρli,lj (z) = q lilj 2 (qli+lj+2z−1; q4)∞(q−li−lj+2z−1; q4)∞ (q−li+lj+2z−1; q4)∞(qli−lj+2z−1; q4)∞ , Clv (l) ε = v (l) l−ε ( v(l) ε ∈ V (l) ) , where for a complex number a with |a| < 1 (z; a)∞ = ∞∏ i=0 ( 1− aiz ) . Let k be a complex number. We set p = q2(k+2). We assume that p satisfies |p| < 1. Let Tj denote the p-shift operator of zj , Tjf(z1, . . . , zn) = f(z1, . . . , pzj , . . . zn). Let l1, . . . , ln and N be nonnegative integers. The qKZ equation for a Vl1 ⊗ · · · ⊗ Vln-valued function Ψ(z1, . . . , zn) is TjΨ = R̂j,j−1(pzj/zj−1) · · · R̂j,1(pzj/z1)κ hj 2 R̂j,n(zj/zn) · · · R̂j,j+1(zj/zj+1)Ψ, (1) q-Wakimoto Modules and Integral Formulae 3 where κ is a complex parameter, R̂i,j(z) signifies that R̂li,lj (z) acts on the i-th and j-th compo- nents of the tensor product and κhj acts on j-th component as κ hj 2 v (lj) m = κ lj−2m 2 v (lj) m . We set (z)∞ = (z; p), θ(z) = (z)∞ ( pz−1 ) ∞(p)∞. Consider a sequence (ν) = (ν1, . . . , νn) satisfying 0 ≤ νi ≤ li for all i and N = n∑ i=1 νi. Let r = ]{i | νi 6= 0}, {i | νi 6= 0} = {k(1) < · · · < k(r)} and ni = νk(i). We set w(ν)(t, z) = ∏ a<b ta − tb q−2ta − tb ∑ Γ1t···tΓr={1,...,N} |Γs|=ns(s=1,...,r)  ∏ 1≤i<j≤r a∈Γi,b∈Γj q−2ta − tb ta − tb  × ∏ b∈Γs ( tb tb − q−lk(i)zk(i) ∏ j<k(i) q−lj tb − zj tb − q−ljzj ) . The elliptic hypergeometric space Fell is the space of functions W (t, z)=W (t1, . . . , tN , z1, . . . , zn) of the form W = Y (z)Θ(t, z) 1 n∏ j=1 N∏ a=1 θ(qlj ta/zj) ∏ 1≤a<b≤N θ(ta/tb) θ(q−2ta/tb) satisfying the following conditions: (i) Y (z) is meromorphic on (C∗)n in z1, . . . , zn, where C∗ = C \ {0}; (ii) Θ(t, z) is holomorphic on (C∗)n+N in t1, . . . , zn and symmetric in t1, . . . , tN ; (iii) T t aW/W = κq−2N+4a−2 n∏ i=1 qli , T z j W/W = q−ljN , where T t aW = W (t1, . . . , pta, . . . , tN , z) and T z j W = W (t, z1, . . . , pzj , . . . , zn). Define the phase function Φ(t, z) by Φ(t, z) = ( N∏ a=1 n∏ i=1 (qlita/zi)∞ (q−lita/zi)∞ )(∏ a<b (q−2ta/tb)∞ (q2ta/tb)∞ ) . For W ∈ Fell let I(w(ε),W ) = ∫ T̃N N∏ a=1 dta ta Φ(t, z)w(ε)(t, z)W (t, z), (2) where T̃N is a suitable deformation of the torus TN = {(t1, . . . , tN ) | |ti| = 1, 1 ≤ i ≤ N}, specified as follows. The integrand has simple poles at ta/zj = ( psq−lj )±1 , s ≥ 0, 1 ≤ a ≤ N, 1 ≤ j ≤ n, 4 K. Kuroki ta/tb = ( psq2 )±1 , s ≥ 0, 1 ≤ a < b ≤ N. The contour of integration in ta is a simple closed curve which rounds the origin in the counter- clockwise direction and separates the following two sets{ psq−ljzj , p sq2tb|s ≥ 0, 1 ≤ j ≤ N, a < b } ,{ p−sqljzj , p −sq−2tb|s ≥ 0, 1 ≤ j ≤ N, a < b } . Let L be a complex number and κ = q −2 ( L+ n∑ i=1 li 2 −N+1 ) . Then ΨW = ( n∏ i=1 zai i )(∏ i<j ξli,lj (zi/zj) )∑ (ε) I(w(−ε),W )v(l1) ε1 ⊗ · · · ⊗ v(ln) εn (3) is a solution of the qKZ equation (1) for any W ∈ Fell where (−ε) = (l1 − ε1, . . . , ln − εn) and ai = li 2(k + 2) ( L + n∑ j=1 lj − li 2 −N + 1 ) , ξli,lj (z) = ( pqli+lj+2z−1; q4, p ) ∞ ( pq−li−lj+2z−1; q4, p ) ∞( pqli−lj+2z−1; q4, p ) ∞ ( pq−li+lj+2z−1; q4, p ) ∞ , (z; p, q) = ∞∏ i=0 ∞∏ j=0 (1− piqjz). 3 Free field realizations We briefly review the free field construction of the representation of the Uq(ŝl2) of level k [1, 10, 11] and intertwining operators [2, 6, 7]. We mainly follow the notation of [6]. We set [n] = qn − q−n q − q−1 . Let k be a complex number and {an, bn, cn, ã0, b̃0, c̃0, Qa, Qb, Qc |n ∈ Z≥0} satisfy [an, am] = δm+n,0 [(k + 2)n][2n] n , [ã0, Qa] = 2(k + 2), [bn, bm] = δm+n,0 −[2n]2 n , [b̃0, Qb] = −4, [cn, cm] = δm+n,0 [2n]2 n , [c̃0, Qc] = 4. Other combinations of elements are supposed to commute. Set N± = C[an, bn, cn | ± n > 0]. Let r be a complex number and s an integer. The Fock module Fr,s is defined to be the free N− module of rank one generated by the vector |r, s〉 satisfying N+|r, s〉 = 0, ã0|r, s〉 = r|r, s〉, b̃0|r, s〉 = −2s|r, s〉, c̃0|r, s〉 = −2s|r, s〉. q-Wakimoto Modules and Integral Formulae 5 We set Fr = ⊕s∈ZFr,s. The right Fock module F † r,s and F † r are similarly defined using the vector 〈r, s| satisfying the conditions 〈r, s|N− = 0, 〈r, s|ã0 = r〈r, s|, 〈r, s|b̃0 = −2s〈r, s|, 〈r, s|c̃0 = −2s〈r, s|. Notice that Fr and F † r have left and right Uq(ŝl2)-module structure respectively [10, 11]. Let |L〉 = |L, 0〉 ∈ FL,0, 〈L| = 〈L, 0| ∈ F † L,0. They become left and right highest weight vectors of Uq(ŝl2) with the weight LΛ1 + (k − L)Λ0 respectively, where Λ0 and Λ1 are fundamental weights of ŝl2. We consider operators φ(l) m (z) : Fr,s → Fr+l,s+l−m, J−(u) : Fr,s → Fr,s+1, S(t) : Fr,s → Fr−2,s−1, the explicit forms of which are given in Appendix C. We set φ (l) l (z) = φl(z) for simplicity. The operator φ (l) m (z) is used to construct the vertex operator for Uq(ŝl2): φ(l)(z) : Wr → Wr+l⊗V (l) z , φ(l)(z) = l∑ m=0 φ(l) m (z)⊗ v(l) m , where Wr is a certain submodule of Fr called q-Wakimoto module [10]. The operator J−(u) is a generating function of a part of generators of the Drinfeld realization for Uq(ŝl2) at level k. The operator S(t) commutes with Uq(ŝl2) modulo total differences. Here modulo total differences means modulo functions of the form k+2∂zf(z) = f(qk+2z)− f(q−(k+2)z) (q − q−1)z . Consider F (t, z) = 〈L + n∑ i=1 li − 2N |φ(l1)(z1) · · ·φ(ln)(zn)S(tN ) · · ·S(t1)|L〉 which is a function taking the value in V (l1) ⊗ · · · ⊗ V (ln). Let 4j = j(j + 2) 4(k + 2) . Set F̂ =  n∏ i=1 z 4 L+ n∑ j=i lj−2N −4 L+ n∑ j=i+1 lj−2N i F =  n∏ i=1 z li 2(k+2) ( L+ ∑ i<j lj−2N+ li+2 2 ) i F. Then the function F̂ (t, z) satisfies qKZ equation (1) with κ = q−2 ( L+ n∑ i=1 li 2 −N+1 ) modulo total differences [10]. 6 K. Kuroki 4 Integral formulae Define the components of F (t, z) by F (t, z) = ∑ νi∈{0,...,li} 1≤i≤n F (ν)(t, z)v(l1) ν1 ⊗ · · · ⊗ v(ln) νn , where (ν) = (ν1, . . . , νn). By the conditions on weights F (ν)(t, z) = 0 unless n∑ i=1 (li − νi) = N is satisfied. We assume this condition once for all. Let ]{i | νi 6= li} = r, {i | νi 6= li} = {k(1) < · · · < k(r)}, ni = lk(i) − νk(i) (1 ≤ i ≤ r). The main result of this paper is Theorem 1. We have F (ν)(t, z) = A(ν)(t, z)  n∏ i=1 z li 2(k+2) ( L−2N+ ∑ i<j lj ) i (∏ i<j ξli,lj (zi/zj) ) Φ(t, z)w(−ν)(t, z), where (−ν) = (l1 − ν1, . . . , ln − νn), ni = lk(i) − νk(i) and A(ν)(t, z) = q−NLq 3N(N−1) 2 − ( n∑ i=1 li ) N q 1 2(k+2) ( k ∑ i<j lilj+k(L−2N) n∑ i=1 li+4LN−4N(N−1) ) × ( 1 q − q−1 )N ∑ (ν)  r∏ s=1 q ( r∑ t=s+1 nt ) ns−lk(s)ns  { r∏ s=1 ns−1∏ i=0 ( 1− q2(lk(s)−i) )} × ( N∏ a=1 t 2 k+2 (a−1)− 1 k+2 L−1 a ) . The formula for F (ν)(t, z) is of the form of (2), (3). More precisely in Tarasov–Varchenko’s formula (2), (3), W can be written as W =  n∏ i=1 z li 2(k+2) ( L−3N− ∑ j<i lj+ ∑ i<j lj ) i ( N∏ a=1 ta ) A(ν)(t, z)W ′ for suitable W ′. This W ′ specifies an intertwiner. In this paper we don’t consider the problem on specifying W ′. To prove Theorem 1 let us begin by writing down the formula obtained by the free field description of operators φl(z), J−(u), S(t) given in Appendix C. Let (ε) = (ε1, . . . , εN ), (µ) = (µ1,1, . . . , µ1,n1 , . . . , µr,nr) ∈ {0, 1}N . Then F (ν)(t, z) can be written as F (ν)(t, z) = (−1)N ( q − q−1 )−2N r∏ i=1 1 [ni]! N∏ a=1 t−1 a q-Wakimoto Modules and Integral Formulae 7 × ∑ εi,µi1,i2 =± N∏ i=1 εi ∮  ∏ 1≤i1≤r 1≤i2≤ni1 µi1,i2 dui1,i2 2πiui1,i2 F (ν) (ε)(µ)(t, z|u), where F (ν) (ε)(µ)(t, z|u) = 〈 L + n∑ i=1 li − 2N |φl1(z1) · · ·φlk(1)−1 (zk(1)−1) × [. . . [φlk(1) (zk(1)), J − µ1,1 (u1,1)]qlk(1) , J − µ1,2 (u1,2)]qlk(1)−2 . . . , J−µ1,n1 (u1,n1)]qlk(1)−2(n1−1) . . . × [. . . [φlk(r) (zk(r)), J − µr,1 (ur,1)]qlk(r) , J − µr,2 (ur,2)]qlk(r)−2 . . . , J−µr,nr (ur,nr)]qlk(r)−2(nr−1) × φlk(r)+1 (zk(r)+1) . . . φln(zn)SεN (tN ) . . . Sε1(t1)|L 〉 . and the integrand in the right hand side signifies to take the coefficient of ( ∏ 1≤i≤r 1≤j≤ni ui,j )−1 . For the notation [x, y]q see Appendix C. Let (m) = (m1, . . . ,mr), 0 ≤ mi ≤ ni. Then ∮  ∏ 1≤i1≤r 1≤i2≤ni1 µi1,i2 dui1,i2 2πiui1,i2 F (ν) (ε)(µ)(t, z) = ∑ 0≤mi≤ni 1≤i≤r (−1) r∑ i=1 mi ( r∏ i=1 qmilk(i)q−mi(ni−1) [ ni mi ]) × ∫ CN  ∏ 1≤i1≤r 1≤i2≤ni1 µi1,i2 dui1,i2 2πiui1,i2 F (ν) (ε)(µ)(m)(t, z|u), where F (ν) (ε)(µ)(m)(t, z|u) = 〈 L + n∑ i=1 li − 2N |φl1(z1) · · ·φlk(1)−1 (zk(1)−1) × ( J−µ1,1 (u1,1) · · · J−µ1,m1 (u1,m1)φlk(1) (zk(1))J − µ1,m1+1 (u1,m1+1) · · · J−µ1,n1 (u1,n1) ) · · · × ( J−µr,1 (ur,1) · · · J−µr,mr (ur,mr)φlk(r) (zk(r))J − µr,mr+1 (ur,mr+1) · · · J−µr,nr (ur,nr) ) × φlk(r)+1 (zk(r)+1) · · ·φln(zn)SεN (tN ) · · ·Sε1(t1)|L 〉 , and CN is a suitable deformation of the torus TN specified as follows. We introduce the lexico- graphical order (i1, i2) < (j1, j2) ⇔ i1 < j1 or i1 = j1 and i2 < j2. For a given (m) = (m1, . . . ,mr), 1 ≤ mi ≤ ni, we define j < (i1, i2) ⇔ j < k(i1) or j = k(i1) and mi1 < i2, j > (i1, i2) ⇔ j > k(i1) or j = k(i1) and mi1 ≥ i2. 8 K. Kuroki The contour for the integration variable ui1,i2 is a simple closed curve rounding the origin in the counterclockwise direction such that qlj+k+2zj ((i1, i2) < j), q−2uj1,j2 ((i1, i2) < (j1, j2)), q−µi1,i2 (k+2)ta (1 ≤ a ≤ N) are inside, and q−lj+k+2zj ((i1, i2) > j), q2uj1,j2 ((j1, j2) < (i1, i2)) are outside. We denote it C(i1,i2). Then F (ν) (ε)(µ)(m)(t, z|u) = f (ν)(t, z)Φ(t, z)G(ν) (ε)(µ)(m)(t, z|u), where f (ν)(t, z) = ∏ i<j (qkzi) lilj 2(k+2) ξli,lj (zi/zj)  { n∏ i=1 (qkzi) − Nli k+2 } × { n∏ i=1 (qkzi) Lli 2(k+2) }{ N∏ i=1 (q−2ti) − L k+2 }{∏ a<b (q−2tb) 2 k+2 } , G (ν) (ε)(µ)(m)(t, z|u) = Ĝ (ν) (ε)(µ)(m)(t, z|u) (∏ a<b qεbtb − qεata tb − q−2ta ) , Ĝ (ν) (ε)(µ)(m)(t, z|u) =  ∏ (i1,i2) qLµi1,i2  ∏ (i1,i2)>j zj − qµi1,i2 lj−k−2ui1,i2 zj − qlj−k−2ui1,i2  ×  ∏ (i1,i2)<j qµi1,i2 lj ui1,i2 − q−µi1,i2 lj+k+2zj ui1,i2 − qlj+k+2zj  ×  ∏ (i1,i2) 1≤b≤N q−µi1,i2 ui1,i2 − q−µi1,i2 (k+1)−εbtb ui1,i2 − q−µi1,i2 (k+2)tb  ×  ∏ (i1,i2)<(j1,j2) q−µi1,i2ui1,i2 − q−µj1,j2uj1,j2 ui1,i2 − q−2uj1,j2  . For i, let A± µ,i = {(i, j)|µi,j = ±}. The number of elements in A± µ,i is a±i and A± µ,i = {`±i,1, . . . , ` ± i,a±i } . We set a−i = ai, A− µ,i = Aµ,i, Aµ = ∪r i=1Aµ,i and Ĵ (ν) (ε)(µ) = ∑ 0≤mi≤ni 1≤i≤r (−1) r∑ i1 mi { r∏ i=1 qmilk(i)q−mi(ni−1) [ ni mi ]} × ∫ CN  ∏ (i1,i2) µi1,i2 dui1,i2 2πiui1,i2  Ĝ (ν) (ε)(µ)(m). See the beginning of the next section for the notation of the q-binomial coefficient [ ni mi ] . For a given (a) = (a1, . . . , ar), 1 ≤ ai ≤ ni, we define Ĵ (ν) (ε)(a) and J (ν) (a) as follows Ĵ (ν) (ε)(a) = ∑ |Aµ,i|=ai 1≤i≤r Ĵ (ν) (ε)(µ), q-Wakimoto Modules and Integral Formulae 9 J (ν) (a) = ∑ ε1,...,εN=±  N∏ j=1 εj  ∏ 1≤a<b≤N qεbtb − qεata tb − q−2ta  Ĵ (ν) (ε)(a). Using J (ν) (a) , F (ν)(t, z) can be written as F (ν)(t, z) = (−1)N ( q − q−1 )−2N ( r∏ i=1 1 [ni]! )( N∏ b=1 t−1 b ) f (ν)(t, z)Φ(t, z) ∑ (a) J (ν) (a) . Theorem 1 straightforwardly follows from the following proposition. Proposition 1. If (a) 6= (n1, n2, . . . , nr), J (ν) (a) (t, z) = 0. For (a) = (n1, n2, . . . , nr) we have J (ν) (n1,...,nr)(t, z) = (−1)N ( 1− q−2 )N q N(N−L)+ N(N−1) 2 − ( n∑ i=1 li ) N × r∏ s=1 q ( r∑ t=s+1 nt ) ns−lk(s)ns [ns]! ns−1∏ i=0 (1− q2(lk(s)−i)) w(−ν)(t, z). This proposition is proved by performing integrals in the variables ui,j in the next section. 5 Proof of Proposition 1 We set [n]! = n∏ i=1 [i], [ n m ] = [n]! [n−m]![m]! , for nonnegative integers n, m (n ≥ m). To prove Proposition 1, we have to calculate Ĵ (ν) (ε)(a). We need the following lemmas. Lemma 1. For n ≥ 1 and n ≥ m ≥ 0, we have (i) ∑ AtB={1,2,...,n} |A|=m  ∏ i<j i∈A,j∈B q2  = qm(n−m) [ n m ] ; (ii) ∑ AtB={1,2,...,n} |A|=m µi=1(i∈A), µi=−1(i∈B) ∏ i<j qµi  = q− n(n−1) 2 +m(n−1) [ n m ] . Proof. By the q-binomial theorem n∏ i=1 ( 1 + q−n−1+2ix ) = n∑ i=0 [ n i ] xi, we have the equation ∑ 1≤i1<···<im≤n q 2 m∑ j=1 ij = q(n+1)m [ n m ] . The assertions (i) and (ii) easily follow from this equation. � 10 K. Kuroki Lemma 2. Let n ≥ 1, n ≥ m ≥ 0 and 1 ≤ i1 < · · · < im ≤ n. Then we have∑ σ∈Sn sgn σ tσ(i1)tσ(i2) · · · tσ(im) ∏ 1≤a<b≤n (tσ(b) − q−2tσ(a)) = q −m(n+1)−n(n−1) 2 +2 m∑ j=1 ij [m]![n−m]! em(t1, . . . , tn) ∏ 1≤a<b≤n (tb − ta), where em(t1, . . . , tn) is the m-th elementary symmetric polynomial. Proof. Set F (t) = ∑ σ∈Sn sgn σ tσ(i1)tσ(i2) · · · tσ(im) ∏ 1≤a<b≤n (tσ(b) − q−2tσ(a)). It is easy to see that F (t) is an antisymmetric polynomial. So we can write F (t) = S(t) ∏ 1≤a<b≤n (tb − ta), where S(t) is a symmetric polynomial. Moreover S(t) is a homogeneous polynomial of degree m and degtiS(t) = 1 for all i ∈ {1, . . . , n}. Hence we have S(t) = cem(t) for some constant c. The number (−1) m∑ j=1 ij+ n(n−1) 2 −m(m+1) 2 c is equal to the coefficient of tni1t n−1 i2 · · · tn−m+1 im tn−m−1 1 tn−m−2 2 · · · tn−1 in F (t). We can show c = q −2nm+m(m−1)+2 m∑ k=1 ik ( q−m(m−1) ∑ σ∈Sm q2`(σ) )q−(n−m)(n−m−1) ∑ τ∈Sn−m q2`(τ)  , where `(σ) is the inversion number of σ. Using the fact ∑ σ∈Sm q2`(σ) = q m(m−1) 2 [m]!, we have the desired result. � Lemma 3. For 1 ≤ n ≤ l, we have n∑ s=0 (−1)sq−s(n−1) [ n s ] ∑ σ∈Sn s∏ i=1 (z − qltσ(i)) n∏ i=s+1 ( z − q−ltσ(i) ) ∏ 1≤a<b≤n tσ(b) − q−2tσ(a) tσ(b) − tσ(a)  = (−1)nq−ln−n(n−1) 2 { n−1∏ i=0 ( 1− q2(l−i) )} [n]!t1t2 . . . tn. Proof. We set Ln,s = ∑ σ∈Sn sgn σ s∏ i=1 (z − qltσ(i)) n∏ j=s+1 ( z − q−ltσ(j) )∏ i>j tσ(i) − q−2tσ(j) ti − tj  , q-Wakimoto Modules and Integral Formulae 11 Ln = n∑ s=0 (−1)sq−s(n−1) [ n s ] Ln,s. Using Lemma 2, Ln,s = n∑ k=0 (−1)kzn−kek(t)q−k(n+1)−n(n−1) 2 [k]![n− k]!  k∑ t=0 q2lt−lk  ∑ 1≤i1<i2<···<it≤s s<it+1<···<ik≤n q k∑ j=1 2ij   = n∑ k=0 (−1)kzn−kek(t)q−lk−k(n+1)−n(n−1) 2 [k]![n− k]! × ( k∑ t=0 q2ltq2s(k−t)+(s+1)t+(n−s+1)(k−t) [ s t ] [ n− s k − t ]) . Then, Ln = n∑ s=0 (−1)sq−s(n−1) [ n s ] n∑ k=0 (−1)kzn−kek(t)q−lk−k(n+1)−n(n−1) 2 [k]![n− k]! × ( k∑ t=0 q2ltqsk+k+n(k−t) [ s t ] [ n− s k − t ]) = [n]! n∑ k=0 (−1)kzn−kek(t) q−lk−k(n+1)−n(n−1) 2 × k∑ t=0 q2ltq(k−t)(n+1)+t [ k t ] n−k+t∑ s=t (−1)sq−s(n−k−1) [ n− k s− t ] = [n]! n∑ k=0 (−1)kzn−kek(t) q−lk−k(n+1)−n(n−1) 2 × k∑ t=0 q2ltq(k−t)(n+1)+t [ k t ] (−1)tq−t(n−k−1)δn,k = [n]!(−1)nq−lnq− n(n−1) 2 n∑ t=0 (−1)tq2ltq−(n−1)t [ n t ] en(t) = [n]!(−1)nq−lnq− n(n−1) 2 { n−1∏ i=0 (1− q2(l−i)) } en(t). Here we have used the q-binomial theorem. � For a given sequence (mi)r i=1 (0 ≤ mi ≤ ni), let Mi = {(i, j) | j ≤ mi}. Set Î (ν) (µ)(ε)(m) = ∫ CN  ∏ (i1,i2) dui1,i2 2πiui1,i2  Ĝ (ν) (µ)(ε)(m). Lemma 4. We have Î (ν) (µ)(ε)(m) = q (L−N) { r∑ s=1 (ns−2as) } ∏ (i1,i2)<j qµi1,i2 lj  ∏ (i1,i2)<(j1,j2) q−µi1,i2  12 K. Kuroki × ∑ CitDi=Aµ,i D′ i=Di∩Mi 1≤i≤r ( N∏ b=1 q−1−εb ) r∑ i=1 |Ci|  ∏ (i1,i2)<(j1,j2) (i1,i2)∈C1∪···∪Cr (j1,j2)∈D1∪···∪Dr q2  × ∑ 1≤bi,j≤N 1≤i≤r 1≤j≤|Di| r∏ i1=1  |Di1 |∏ i2=1 (1− q −1−εbi1,i2 ) ∏ b6=bi1,i2 tbi1,i2 − q−1−εbtb tbi1,i2 − tb × ∏ (i1,i2)<(j1,j2) tbi1,i2 − tbj1,j2 tbi1,i2 − q−2tbj1,j2 k(i1)−1∏ j=1 zj − q−lj tbi1,i2 zj − qlj tbi1,i2  |Di1 |∏ i2=|D′ i1 |+1 zk(i1) − q−lk(i1)tbi1,i2 zk(i1) − qlk(i1)tbi1,i2  . Proof. We integrate with respect the variables ui,j , (i, j) ∈ A+ µ in the order u`+1,1 , . . . , u`+ 1,a+ 1 , u`+2,1 , . . . , u`+ r,a+ r . With respect to u`+1,1 the only singularity outside C`+1,1 is ∞. Then the integral in u`+1,1 is calculated by taking the residue at ∞. After this integration the integrand as a function of u`+1,2 has a similar structure. Then the integral with respect to u`+1,2 is calculated by taking residue at ∞ and so on. Finally we get Î (ν) (ε)(µ)(m) = (−1) r∑ i=1 a+ i Res u `+ r,a+ r =∞ · · · Res u `+r,1 =∞ · · · Res u `+ 1,a+ 1 =∞ · · · Res u `+1,1 =∞ Ĝν (ε)(µ)(m)(t, z|u) =  ∏ (i1,i2) q(L−N)µi1,i2  ∏ (i1,i2)<j qµi1,i2 lj  ∏ (i1,i2)<(j1,j2) q−µi1,i2  × ∫ C N− r∑ i=1 a+ i  ∏ (i1,i2)∈Aµ dui1,i2 2πiui1,i2   ∏ j<(i1,i2) (i1,i2)∈Aµ zj − q−lj−k−2ui1,i2 zj − qlj−k−2ui1,i2  ×  ∏ (i1,i2)∈Aµ 1≤b≤N ui1,i2 − qk+1−εbtb ui1,i2 − qk+2tb   ∏ (i1,i2)<(j1,j2) (i1,i2),(j1,j2)∈Aµ ui1,i2 − uj1,j2 ui1,i2 − q−2uj1,j2  , where C N− r∑ i=1 a+ i is the resulting contour for (u`1,1 , . . . , u`r,ar ). We set I (ν)+ (ε)(µ)(m)(t, z) =  ∏ (i1,i2)∈Aµ 1 ui1,i2   ∏ j<(i1,i2) (i1,i2)∈Aµ zj − q−lj−k−2ui1,i2 zj − qlj−k−2ui1,i2  ×  ∏ (i1,i2)∈Aµ 1≤b≤N ui1,i2 − qk+1−εbtb ui1,i2 − qk+2tb   ∏ (i1,i2)<(j1,j2) (i1,i2),(j1,j2)∈Aµ ui1,i2 − uj1,j2 ui1,i2 − q−2uj1,j2  . q-Wakimoto Modules and Integral Formulae 13 Next we perform integrations with respect to the remaining variables ui,j , (i, j) ∈ Aµ in the order u`r,ar , . . . , u`r,1 , u`r−1,ar−1 , . . . , u`1,1 . The poles of the integrand inside C`r,ar are 0 and qk+2tb, b = 1, . . . , N . Thus we have∫ C`r,ar du`r,ar 2πi I (ν)+ (ε)(µ)(m)(t, z) =  ∏ i≤b≤N q−1−εb   ∏ (i1,i2)∈Aµ (i1,i2) 6=`r,ar 1 ui1,i2   ∏ j<(i1,i2) (i1,i2)∈Aµ−{`r,ar} zj − q−lj−k−2ui1,i2 zj − qlj−k−2ui1,i2  ×  ∏ (i1,i2)∈Aµ−{`r,ar} 1≤b≤N ui1,i2 − qk+1−εbtb ui1,i2 − qk+2tb   ∏ (i1,i2)<(j1,j2)<`r,ar (i1,i2),(j1,j2)∈Aµ ui1,i2 − uj1,j2 ui1,i2 − q−2uj1,j2  + ∑ 1≤b`r,ar ≤N (1− q −1−εb`r,ar )  ∏ j<`r,ar zj − q−lj tb`r,ar zj − qlj−k−2tb`r,ar   ∏ 1≤b≤N b6=b`r,ar tb`r,ar − q−1−εbtb tb`r,ar − tb  ×  ∏ (i1,i2)<`r,ar ui1,i2 − qk+2tb`r,ar ui1,i2 − qktb`r,ar   ∏ (i1,i2)∈Aµ (i1,i2) 6=`r,ar 1 ui1,i2   ∏ j<(i1,i2) (i1,i2)∈Aµ−{`r,ar} zj − q−lj−k−2ui1,i2 zj − qlj−k−2ui1,i2  ×  ∏ (i1,i2)∈Aµ−{`r,ar} 1≤b≤N ui1,i2 − qk+1−εbtb ui1,i2 − qk+2tb   ∏ (i1,i2)<(j1,j2)<`r,ar (i1,i2),(j1,j2)∈Aµ ui1,i2 − uj1,j2 ui1,i2 − q−2uj1,j2  . The integrand in u`r,ar−1 has the poles at 0 and qk+2tb inside C`r,ar−1 and so on. Finally we get Î (ν) (ε)(µ) =  ∏ (i1,i2) q(L−N)µi1,i2  ∏ (i1,i2)<j qµi1,i2 lj  ∏ (i1,i2)<(j1,j2) q−µi1,i2  × ∑ w`i1,i2 ∈{0}∪(T−Wi1,i2 ) (i1,i2)∈Aµ Res u`1,1 =w`1,1 · · · Res u`r,ar =w`r,ar I (ν)+ (ε)(µ), where T = {t1, t2, . . . , tN}, Wi1,i2 = ∪ `i1,i2 <`j1,j2 {w`j1,j2 }. Set Ci = {`i,j |w`i,j = 0}, Di = Aµ,i − Ci. Then we have the desired result. � Now we can calculate Ĵ (ν) (ε)(a). Proposition 2. We have Ĵ (ν) (ε)(a) = (−1) r∑ i=1 ai q r∑ s=1 ( n∑ t=k(s)+1 lt ) (ns−2as) (q (L−N) { r∑ s=1 (ns−2as) }) 14 K. Kuroki × q − r∑ s=1 r∑ t=s+1 ns(nt−2at)  ∑ 1≤bi1,i2 ≤N 1≤i1≤r 1≤i2≤ai1  ∏ i1<j1 tbi1,i2 − tbi1,i2 tbi1,i2 − q−2tbi1,i2  × r∏ i1=1  ai1∑ si1 =0 qai1 (ni1 −si1 −1)− ni1 (ni1 −1) 2 [ni1 ]! [si1 ]![ai1 − si1 ]! × ni1 −ai1∑ i=0 (−1)i+si1 qi(2lk(i1)−ni1 −ai1 +1)+si1 1 [i]![ni1 − ai1 − i]! ×  ai1∏ i2=1 (1− q −1−εbi1,i2 ) ∏ b6=bi1,i2 tbi1,i2 − q−1−εbtb tbi1,i2 − tb ∏ i2<j2 tbi1,i2 − tbi1,j2 tbi1,i2 − q−2tbi1,j2 × k(i1)−1∏ j=1 zj − q−lj tbi1,i2 zj − qlj tbi1,i2  ai1∏ i2=si1 +1 zk(i1) − q−lk(i1)tbi1,i2 zk(i1) − qlk(i1)tbi1,i2   . Proof. Using Lemma 4 we have Ĵ (ν) (ε)(a) = (−1) r∑ i=1 ai ∑ |Aµ,i|=ai 1≤i≤r ∑ 0≤mi≤ni 1≤i≤r (−1) r∑ i=1 mi { r∏ i=1 qmilk(i)q−mi(ni−1) [ ni mi ]} × ( r∏ i=1 q(L−N)(ni−2ai) ) ∏ (i1,i2)<j qµi1,i2 lj  ∏ (i1,i2)<(j1,j2) q−µi1,i2  × ∑ CitDi=Aµ,i D′ i=Di∩Mi 1≤i≤r ( N∏ b=1 q−1−εb) r∑ i=1 |Ci|  ∏ (i1,i2)<(j1,j2) (i1,i2)∈C1∪···∪Cr (j1,j2)∈D1∪···∪Dr q2  × ∑ 1≤bi,j≤N 1≤i≤r 1≤j≤|Di| r∏ i1=1  |Di1 |∏ i2=1 (1− q −1−εbi1,i2 ) ∏ b6=bi1,i2 tbi1,i2 − q−1−εbtb tbi1,i2 − tb × ∏ (i1,i2)<(j1,j2) tbi1,i2 − tbj1,j2 tbi1,i2 − q−2tbj1,j2 k(i1)−1∏ j=1 zj − q−lj tbi1,i2 zj − qlj tbi1,i2  × |Di1 |∏ i2=|D′ i1 |+1 zk(i1) − q−lk(i1)tbi1,i2 zk(i1) − qlk(i1)tbi1,i2  . (4) Set λi = |Aµ,i ∩Mi|, γi = |Di|, si = |D′ i|, 1 ≤ i ≤ r. Then the right hand side of (4) is equal to∑ 0≤mi≤ni 1≤i≤r (−1) r∑ i=1 mi { r∏ i=1 qmilk(i)q−mi(ni−1) [ ni mi ]} × ∑ 0≤γj≤aj 1≤j≤r ∑ 0≤sj≤γj 1≤j≤r ∑ 0≤λj≤mj 1≤j≤r C(a)(γ) { q r∑ s=1 lk(s)(ms−2λs) } q-Wakimoto Modules and Integral Formulae 15 ×  r∏ i1=1  ∑ |Aµ,i1 |=ai1 |Aµ,i1 ∩Mi1 |=λi1 ∏ i2<j2 i1=j1 q−µi1,i2   × ( r∏ i1=1 q λi1 γi1 +ai1 γi1 −ai1 si1 −γ2 i1 [ λi1 si1 ] [ ai1 − λi1 γi1 − si1 ]) × ∑ 1≤bi1,i2 ≤N 1≤i1≤r 1≤i2≤γi1 r∏ i1=1   γi1∏ i2=1 (1− q −1−εbi1,i2 ) ∏ b6=bi1,i2 tbi1,i2 − q−1−εbtb tbi1,i2 − tb × ∏ i2<j2 tbi1,i2 − tbi1,j2 tbi1,i2 − q−2tbi1,j2 k(i1)−1∏ j=1 zj − q−lj tbi1,i2 zj − qlj tbi1,i2  γi1∏ i2=si1 +1 zk(i1) − q−lk(i1)tbi1,i2 zk(i1) − qlk(i1)tbi1,i2  ×  ∏ i1<j1 tbi1,i2 − tbj1,j2 tbi1,i2 − q−2tbj1,j2  , where C(a)(γ) = (−1) r∑ i=1 ai q r∑ s=1 ( n∑ t=k(s)+1 lt ) (ns−2as) (q (L−N) { r∑ s=1 (ns−2as) }) × q − r∑ s=1 (ns−2as) ( r∑ t=s+1 nt )(q 2 r∑ s=1 ∑ s<t γt(as−γs) ) ∏ 1≤b≤N q−1−εb  r∑ s=1 (as−γs) . Here we have used Lemma 1 (i). By (ii) of Lemma 1 we have Ĵ (ν) (ε)(a) = r∑ j=1 ∑ 0≤γj≤aj 1≤j≤r C(a)(γ) ∑ 1≤bi1,i2 ≤N 1≤i1≤r 1≤i2≤γi2  ∏ i1<j1 tbi1,i2 − tbj1,j2 tbi1,i2 − q−2tbj1,j2  × r∏ i1=1  γi1∑ si1 =0 aj−γi1 +si1∑ λi1 =si1 ni1∑ mi1 =0 (−1)mi1 q−mi1 (ni1 −1)q2lk(i1)(mi1 −λi1 ) [ ni1 mi1 ] ×  ∑ |Aµ,i1 |=ai1 |Aµ,i1 ∩Mi1 |=λi1 ∏ i2<j2 i1=j1 q−µi1,i2  ( q λi1 γi1 +ai1 γi1 −ai1 si1 −γ2 i1 [ λi1 si1 ] [ ai1 − λi1 γi1 − si1 ]) ×   γi1∏ i2=1 (1− q −1−εbi1,i2 ) ∏ b6=bi1,i2 tbi1,i2 − q−1−εbtb tbi1,i2 − tb ∏ i2<j2 tbi1,i2 − tbi1,j2 tbi1,i2 − q−2tbi1,j2 × k(i1)−1∏ j=1 zj − q−lj tbi1,i2 zj − qlj tbi1,i2  γi1∏ i2=si1 +1 zk(i1) − q−lk(i1)tbi1,i2 zk(i1) − qlk(i1)tbi1,i2   16 K. Kuroki = ∑ 0≤γj≤aj 1≤j≤r C(a)(γ) ∑ 1≤bi1,i2 ≤N 1≤i1≤r 1≤i2≤γi2  ∏ i1<j1 tbi1,i2 − tbj1,j2 tbi1,i2 − q−2tbj1,j2  × r∏ i1=1  γi1∑ si1 =0 aj−γi1 +si1∑ λi1 =si1 ni1∑ mi1 =0 (−1)mi1 q−mi1 (ni1 −1)q2lk(i1)(mi1 −λi1 ) [ ni1 mi1 ] × ( qni1 λi1 +ai1 ni1 −ai1 mi1 −ai1 − ni1 (ni1 −1) 2 [ mi1 λi1 ] [ ni1 −mi1 ai1 − λi1 ]) × ( q λi1 γi1 +ai1 γi1 −ai1 si1 −γ2 i1 [ λi1 si1 ] [ ai1 − λi1 γi1 − si1 ]) ×  γi1∏ i2=1 (1− q −1−εbi1,i2 ) ∏ b6=bi1,i2 tbi1,i2 − q−1−εbtb tbi1,i2 − tb ∏ i2<j2 tbi1,i2 − tbi1,j2 tbi1,i2 − q−2tbi1,j2 × k(i1)−1∏ j=1 zj − q−lj tbi1,i2 zj − qlj tbi1,i2  γi1∏ i2=si1 +1 zk(i1) − q−lk(i1)tbi1,i2 zk(i1) − qlk(i1)tbi1,i2   . It is easy to show a−γ+s∑ λ=s n∑ m=0 (−1)mq−m(n−1) [ n m ] q2l(m−λ) ( qnλ+an−am−a−n(n−1) 2 [ m λ ] [ n−m a− λ ]) × ( qλγ+aγ−as−γ2 [ λ s ] [ a− λ γ − s ]) = (−1)sqa(n−s−1)+sq− n(n−1) 2 [n]! [s]![a− s]! n−a∑ i=0 (−1)iqi(2l−n−a+1) 1 [i]![n− a− i]! δa,γ , for 0 ≤ s ≤ γ ≤ a ≤ n. Hence Ĵ (ν) (ε)(a) = (−1) r∑ i=1 ai q r∑ s=1 ( n∑ t=k(s)+1 lt ) (ns−2as) (q (L−N) { r∑ s=1 (ns−2as) }) × q − r∑ s=1 (ns−2as) ( r∑ t=s+1 nt ) ∑ 1≤bi1,i2 ≤N 1≤i1≤r 1≤i2≤ai1  ∏ i1<j1 tbi1,i2 − tbj1,j2 tbi1,i2 − q−2tbj1,j2  × r∏ i1=1  ai1∑ si1 =0 (−1)si1 qai1 (ni1 −si1 −1)+si1 q− ni1 (ni1 −1) 2 [ni1 ]! [si1 ]![ai1 − si1 ]! × ni1 −ai1∑ i=0 (−1)iqi(2lk(i1)−ni1 −ai1 +1) 1 [i]![ni1 − ai1 − i]! ×  ai1∏ i2=1 (1− q −1−εbi1,i2 ) ∏ b6=bi1,i2 tbi1,i2 − q−1−εbtb tbi1,i2 − tb ∏ i2<j2 tbi1,i2 − tbi1,j2 tbi1,i2 − q−2tbi1,j2 × k(i1)−1∏ j=1 zj − q−lj tbi1,i2 zj − qlj tbi1,i2  ai1∏ i2=si1 +1 zk(i1) − q−lk(i1)tbi1,i2 zk(i1) − qlk(i1)tbi1,i2   . � q-Wakimoto Modules and Integral Formulae 17 Lemma 5. If ai 6= ni for some i, ∑ εi=± 1≤i≤N  N∏ j=1 εj (∏ a<b qεbtb − qεata tb − q−2ta ) Ĵ (ν) (ε)(a) = 0. Proof. It is enough to show the following equation. For 1 ≤ bi1,i2 ≤ N (1 ≤ i1 ≤ r, 1 ≤ i2 ≤ ai1), bi1,i2 6= bj1,j2 ((i1, i2) 6= (j1, j2)), ∑ εi=± 1≤i≤N ( N∏ i=1 εi )∏ a<b (qεbtb − qεata) ∏ 1≤i1≤r 1≤i2≤ai1 (1− q −1−εbi1,i2 ) ∏ b6=bi1,i2 (tbi1,i2 − q−1−εbtb)  = (1− q−2)Nq N(N−1) 2 ( r∏ s=1 δas,ns ){∏ a<b (tb − ta) } ∏ b6=bi1,i2 (tbi1,i2 − q−2tb)  . (5) For a set {b1,1, . . . , br,ar} = {b1, . . . , bα}, let{c1, . . . , cN−α} be defined by {b1, . . . , bα} t {c1, . . . , cN−α} = {1, . . . , N}, where α = r∑ i=1 ai. Then the left hand side of (5) is equal to (1− q−2)α  ∏ 1≤i≤α δεbi ,+ ∏ i<j q(tbj − tbi )   ∏ 1≤i,j≤α i6=j (tbi − q−2tbj )  × ∏ bi<cj (−q)  ∏ ci<bj q  ∑ εci=± 1≤i≤N−α ( N−α∏ i=1 εci )∏ i<j (qεcj tcj − qεci tci)  ×  ∏ 1≤i≤α ∏ 1≤j≤N−α (tbi − qεcj−1tcj )   ∏ 1≤i≤α ∏ 1≤j≤N−α (tbi − q−1−εcj tcj )  . Using (tbj − qεci−1tci) ( tbi − q−1−εcj tcj ) = (tbj − tci) ( tbi − q−2tcj ) , we have ∑ ε ( N∏ i=1 εi ){∏ a<b ( qεbtb − qεata )} ∏ 1≤i1≤r 1≤i2≤ai1 ( 1− q −1−εbi1,i2 )  ∏ b6=bi1,i2 ( tbi1,i2 − q−1−εbtb ) = (1− q−2)α  ∏ 1≤i≤α δεbi ,+ ∏ i<j q(tbj − tbi )   ∏ 1≤i,j≤α i6=j (tbi − q−2tbj )  ×  ∏ 1≤i≤α ∏ 1≤j≤N−α (tbi − tcj ) ( tbi − q−2tcj ) 18 K. Kuroki × ∏ bi<cj (−q)  ∏ ci<bj q  ∑ εci=± 1≤i≤N−α ( N−α∏ i=1 εci )∏ i<j ( qεcj tcj − qεci tci ) . Let α 6= N and ai(ε) =t (1, qεti, (qεti)2, . . . , (qεti)N−α−1). Then ∑ εi=± 1≤i≤N−α ( N−α∏ i=1 εi )∏ i<j (qεj tj − qεiti) = ∑ εi=± 1≤i≤N−α ( N−α∏ i=1 εi ) det(a1(ε1),a2(ε2), . . . ,aN−α(εN−α)). (6) Since ∑ εi=± εiai(ε) =t (0, (q − q−1)ti, . . . , (qN−α−1 − q−(N−α−1))tN−α−1 i ), the right hand side of (6) is equal to 0. � If ai = ni for all i, then ∑ εi=± 1≤i≤N ( N∏ i=1 εi ) ∏ 1≤a<b≤N qεbtb − qεata tb − q−2ta  Ĵ (ν) (ε)(a) = C1 (∏ a<b tb − ta tb − q−2ta ) ∑ Γ1t···tΓr={1,...,N} |Γs|=ns (s=1,...,r) ∑ bi1,i2 ∈Γi1 1≤i1≤r 1≤i2≤ni1  ∏ i1>j1 tbi1,i2 − q−2tbj1,j2 tbi1,i2 − tbj1,j2  × r∏ i1=1  ni1∑ si1 =0 (−1)si1 q−(ni1 −1)si1 [ ni1 si1 ] si1∏ i2=1 (zk(i1) − qlk(i1)tbi1,i2 ) × ni1∏ i2=si1 +1 (zk(i1) − q−lk(i1)tbi1,i2 ) ∏ i2>j2 tbi1,i2 − q−2tbi1,j2 tbi1,i2 − tbi1,j2 × ni1∏ i2=1  1 zk(i1) − qlk(i1)tbi1,i2 k(i1)−1∏ j=1 zj − q−lj tbi1,i2 zj − qlj tbi1,i2  , (7) where C1 = (−1)N ( 1− q−2 )N qN2−LNq N(N−1) 2 q r∑ i=1 ni(ni−1) 2 × q − r∑ s=1 ( n∑ t=k(s)+1 lt ) ns  q r∑ s=1 ( r∑ t=s+1 nt ) ns  . By Lemma 3 the right hand side of (7) becomes C1 r∏ s=1 { (−1)ns [ns]!q−lk(s)nsq− ns(ns−1) 2 { ns−1∏ i=0 ( 1− q2(lk(s)−i) )}} q-Wakimoto Modules and Integral Formulae 19 × (∏ a<b tb − ta tb − q−2ta ) ∑ Γ1t···tΓr={1,...,N} |Γs|=ns (s=1,...,r)  ∏ 1≤i<j≤r a∈Γi,b∈Γj tb − q−2ta tb − ta  × r∏ s=1 ∏ b∈Γs  tb zk(s) − qlk(s)tb k(s)−1∏ i=1 zi − q−litb zi − qlitb  . This completes the proof of Proposition 1. � A The representation V (l) z Let qhi , ei, fi (i = 0, 1) and qd be the generators of Uq(ŝl2). (See [4] for more details.) The actions of the generators of Uq(ŝl2) on V (l) z are given as follows. For 0 ≤ i ≤ l and n ∈ Z, e0v (l) j ⊗ zn = [l − i]v(l) i+1 ⊗ zn+1, e1v (l) j ⊗ zn = [i]v(l) i−1 ⊗ zn, f0v (l) j ⊗ zn = [i]v(l) i−1 ⊗ zn−1, f1v (l) j ⊗ zn = [l − i]v(l) i+1 ⊗ zn, qh0v (l) i ⊗ zn = q−(l−2i)v (l) i ⊗ zn, qh1v (l) i ⊗ zn = ql−2iv (l) i ⊗ zn, qdv (l) j ⊗ zn = qnv (l) j ⊗ zn. B R-matrix We give examples of explicit forms of R-matrix in the case of l1 = 1 or l2 = 1. They are taken from [4]. If we write R1,l2(z) ( v(1) ε ⊗ v (l2) j ) = ∑ ε′=0,1 v (1) ε′ ⊗ r1l2 ε′ε (z)v(l2) j , Rl1,1(z) ( v (l1) j ⊗ v(1) ε ) = ∑ ε′=0,1 rl11 ε′ε (z)v(l1) j ⊗ v (1) ε′ , then we have( r1l2 00 (z) r1l2 01 (z) r1l2 10 (z) r1l2 11 (z) ) = 1 q1+l2/2 − z−1q−l2/2 ( q1+h/2 − z−1q−h/2 (q − q−1)z−1fqh/2 (q − q−1)eq−h/2 q1−h/2 − z−1qh/2 ) ,( rl11 00 (z) rl11 01 (z) rl11 10 (z) rl11 11 (z) ) = 1 zql1/2 − q−1−l1/2 ( zqh/2 − q−1−h/2 (q − q−1)zqh/2f (q − q−1)q−h/2e zq−h/2 − q−1+h/2 ) , h = h1, e = e1 and f = f1. C Free field representations The following formulae are given in [6]. For x = a, b, c let x(L;M,N |z : α) = − ∑ n6=0 [Ln]xn [Mn][Nn] z−nq|n|α + Lx̃0 MN log z + L MN Qx, x(N |z : α) = x(L;L,N |z : α) = − ∑ n6=0 xn [Nn] z−nq|n|α + x̃0 N log z + 1 N Qx. 20 K. Kuroki The normal ordering is defined by specifying N+, ã0, b̃0, c̃0 as annihilation operators, N−, Qa, Qb, Qc as creation operators. Define operators J−(z) : Fr,s → Fr,s+1, S(z) : Fr,s → Fr−2,s−1, φ(l) m (z) : Fr,s → Fr+l,s+l−m, by J−(z) = 1 (q − q−1)z (J−+ (z)− J−− (z)), J−µ (z) =: exp ( a(µ) ( q−2z;−k + 2 2 ) + b ( 2|q(µ−1)(k+2)z;−1 ) + c ( 2|q(µ−1)(k+1)−1z; 0 )) :, a(µ) ( q−2z;−k + 2 2 ) = µ {( q − q−1 ) ∞∑ n=1 aµnz−µnq(2µ− k+2 2 )n + ã0 log q } , S(z) = −1 (q − q−1)z (S+(z)− S−(z)), Sε(z) =: exp ( −a ( k + 2|q−2z;−k + 2 2 ) − b ( 2|q−k−2z;−1 ) − c ( 2|q−k−2+εz; 0 )) :, φ (l) l (z) =: exp ( a ( l; 2, k + 2|qkz; k + 2 2 )) :, φ (l) l−r(z) = 1 [r]! ∮  r∏ j=1 duj 2πi [. . . [[φ(l) l (z), J−(u1) ] ql , J−(u2) ] ql−2 , . . . , J−(ur) ] ql−2r+2 , where [r]! = r∏ i=1 [i], [X, Y ]q = XY − qY X, and the integral in φ (l) l−r(z) signifies to take the coefficient of (u1 · · ·ur)−1. D List of OPE’s The following formulae are given in [6] φl1(z1)φl2(z2) = (qkz1) l1l2 2(k+2) ( ql1+l2+2k+6 z2 z1 ; q4, q2(k+2) ) ∞ ( q−l1−l2+2k+6 z2 z1 ; q4, q2(k+2) ) ∞( ql1−l2+2k+6 z2 z1 ; q4, q2(k+2) ) ∞ ( q−l1+l2+2k+6 z2 z1 ; q4, q2(k+2) ) ∞ × : φl1(z1)φl2(z2) :, |q−l1−l2+2k+6z2| < |z1|, φl(z)J−µ (u) = z − qµl−k−2u z − ql−k−2u : φl(z)J−µ (u) :, |q−l−k−2u| < |z|, J−µ (u)φl(z) = qµl u− q−µl+k+2z u− ql+k+2z : φl(z)J−µ (u) :, |q−l+k+2u| < |z|, φl(z)Sε(t) = ( ql t z ; p ) ∞( q−l t z ; p ) ∞ (qkz)− l k+2 : φl(z)Sε(t) :, |z| > |q−lt|, J−µ (u)Sε(t) = q−µ u− q−µ(k+1)−εt u− q−µ(k+2)t : J−µ (u)Sε(t) :, |u| > |q−k−2t|, q-Wakimoto Modules and Integral Formulae 21 J−µ1 (u1)J−µ2 (u2) = q−µ1u1 − q−µ2u2 u1 − q−2u2 : J−µ1 (u1)J−µ2 (u2) :, |u1| > |q−2u2|, Sε1(t1)Sε2(t2) = (q−2t1) 2 k+2 qε1t1 − qε2t2 t1 − q−2t2 ( q−2 t2 t1 ; p ) ∞( q2 t2 t1 ; p ) ∞ : Sε1(t1)Sε2(t2) :, |t1| > |q−2t2|. Acknowledgements After completing the paper we know that similar results to the present paper are obtained by H. Awata, S. Odake and J. Shiraishi [12]. I would like to thank all of them for kind correspon- dences and permitting me to write the results in a single authored paper. I am also grateful to Professor H. Konno for useful comments. I would like to thank Professor A. Nakayashiki for constant encouragements. References [1] Abada A., Bougourzi A.H., El Gradechi M.A., Deformation of the Wakimoto construction, Modern Phys. Lett. A 8 (1993), 715–724, hep-th/9209009. [2] Bougourzi A.H., Weston R.A., Matrix elements of Uq(su(2)k) vertex operators via bosonization, Internat. J. Modern Phys. A 9 (1994), 4431–4447, hep-th/9305127. [3] Frenkel I.B., Reshetikhin N.Yu., Quantum affine algebras and holonomic difference equations, Comm. Math. Phys. 146 (1992), 1–60. [4] Idzumi M., Tokihiro T., Iohara K., Jimbo M., Miwa T., Nakashima T., Quantum affine symmetry in vertex models, Internat. J. Modern Phys. A 8 (1993), 1479–1511, hep-th/9208066. [5] Jimbo M., Miwa T., Algebraic analysis of solvable lattice models, CBMS Regional Conference Series in Mathematics, Vol. 85, American Math. Soc., Providence, RI, 1995. [6] Kato A., Quano Y.-H., Shiraishi J., Free boson representation of q-vertex operators and their correlation functions, Comm. Math. Phys. 157 (1993), 119–137, hep-th/9209015. [7] Konno H., Free-field representation of the quantum affine algebra Uq(ŝl2) and form factors in the higher-spin XXZ model, Nuclear Phys. B 432 (1994), 457–486, hep-th/9407122. [8] Kuroki K., Nakayashiki A., Free field approach to solutions of the quantum Knizhnik–Zamolodchikov equa- tions, SIGMA 4 (2008), 049, 13 pages, arXiv:0802.1776. [9] Matsuo A., Quantum algebra structure of certain Jackson integrals, Comm. Math. Phys. 157 (1993), 479– 498. [10] Matsuo A., A q-deformation of Wakimoto modules, primary fields and screening operators, Comm. Math. Phys. 160 (1994), 33–48, hep-th/9212040. [11] Shiraishi J., Free boson representation of quantum affine algebra, Phys. Lett. A 171 (1992), 243–248. [12] Shiraishi J., Free boson realization of quantum affine algebras, PhD thesis, University of Tokyo, 1995. [13] Tarasov V., Varchenko A., Geometry of q-hypergeometric functions, quantum affine algebras and elliptic quantum groups, Astérisque 246 (1997), 1–135. http://arxiv.org/abs/hep-th/9209009 http://arxiv.org/abs/hep-th/9305127 http://arxiv.org/abs/hep-th/9208066 http://arxiv.org/abs/hep-th/9209015 http://arxiv.org/abs/hep-th/9407122 http://arxiv.org/abs/0802.1776 http://arxiv.org/abs/hep-th/9212040 1 Introduction 2 Tarasov-Varchenko's formulae 3 Free field realizations 4 Integral formulae 5 Proof of Proposition 1 A The representation V^{(l)}_z B R-matrix C Free field representations D List of OPE's References