On the Number of Real Roots of the Yablonskii-Vorob'ev Polynomials

We study the real roots of the Yablonskii-Vorob'ev polynomials, which are special polynomials used to represent rational solutions of the second Painlevé equation. It has been conjectured that the number of real roots of the nth Yablonskii-Vorob'ev polynomial equals [(n+1)/2]. We prove thi...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автор: Roffelsen, P.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149188
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the Number of Real Roots of the Yablonskii-Vorob'ev Polynomials / P. Roffelsen // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149188
record_format dspace
spelling irk-123456789-1491882019-02-20T01:24:42Z On the Number of Real Roots of the Yablonskii-Vorob'ev Polynomials Roffelsen, P. We study the real roots of the Yablonskii-Vorob'ev polynomials, which are special polynomials used to represent rational solutions of the second Painlevé equation. It has been conjectured that the number of real roots of the nth Yablonskii-Vorob'ev polynomial equals [(n+1)/2]. We prove this conjecture using an interlacing property between the roots of the Yablonskii-Vorob'ev polynomials. Furthermore we determine precisely the number of negative and the number of positive real roots of the nth Yablonskii-Vorob'ev polynomial. 2012 Article On the Number of Real Roots of the Yablonskii-Vorob'ev Polynomials / P. Roffelsen // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 8 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 34M55 DOI: http://dx.doi.org/10.3842/SIGMA.2012.099 http://dspace.nbuv.gov.ua/handle/123456789/149188 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We study the real roots of the Yablonskii-Vorob'ev polynomials, which are special polynomials used to represent rational solutions of the second Painlevé equation. It has been conjectured that the number of real roots of the nth Yablonskii-Vorob'ev polynomial equals [(n+1)/2]. We prove this conjecture using an interlacing property between the roots of the Yablonskii-Vorob'ev polynomials. Furthermore we determine precisely the number of negative and the number of positive real roots of the nth Yablonskii-Vorob'ev polynomial.
format Article
author Roffelsen, P.
spellingShingle Roffelsen, P.
On the Number of Real Roots of the Yablonskii-Vorob'ev Polynomials
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Roffelsen, P.
author_sort Roffelsen, P.
title On the Number of Real Roots of the Yablonskii-Vorob'ev Polynomials
title_short On the Number of Real Roots of the Yablonskii-Vorob'ev Polynomials
title_full On the Number of Real Roots of the Yablonskii-Vorob'ev Polynomials
title_fullStr On the Number of Real Roots of the Yablonskii-Vorob'ev Polynomials
title_full_unstemmed On the Number of Real Roots of the Yablonskii-Vorob'ev Polynomials
title_sort on the number of real roots of the yablonskii-vorob'ev polynomials
publisher Інститут математики НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/149188
citation_txt On the Number of Real Roots of the Yablonskii-Vorob'ev Polynomials / P. Roffelsen // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 8 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT roffelsenp onthenumberofrealrootsoftheyablonskiivorobevpolynomials
first_indexed 2025-07-12T21:03:13Z
last_indexed 2025-07-12T21:03:13Z
_version_ 1837476560714596352
fulltext Symmetry, Integrability and Geometry: Methods and Applications SIGMA 8 (2012), 099, 9 pages On the Number of Real Roots of the Yablonskii–Vorob’ev Polynomials Pieter ROFFELSEN Radboud Universiteit Nijmegen, IMAPP, FNWI, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands E-mail: roffelse@science.ru.nl Received August 14, 2012, in final form December 07, 2012; Published online December 14, 2012 http://dx.doi.org/10.3842/SIGMA.2012.099 Abstract. We study the real roots of the Yablonskii–Vorob’ev polynomials, which are spe- cial polynomials used to represent rational solutions of the second Painlevé equation. It has been conjectured that the number of real roots of the nth Yablonskii–Vorob’ev polynomial equals [ n+1 2 ] . We prove this conjecture using an interlacing property between the roots of the Yablonskii–Vorob’ev polynomials. Furthermore we determine precisely the number of negative and the number of positive real roots of the nth Yablonskii–Vorob’ev polynomial. Key words: second Painlevé equation; rational solutions; real roots; interlacing of roots; Yablonskii–Vorob’ev polynomials 2010 Mathematics Subject Classification: 34M55 1 Introduction In this paper we study the real roots of the Yablonskii–Vorob’ev polynomials Qn (n ∈ N). Yablonskii and Vorob’ev found these polynomials while studying the hierarchy of rational solu- tions of the second Painlevé equation. The Yablonskii–Vorob’ev polynomials satisfy the defining differential-difference equation Qn+1Qn−1 = zQ2 n − 4 ( QnQ ′′ n − (Q′n)2 ) , with Q0 = 1 and Q1 = z. The Yablonskii–Vorob’ev polynomials Qn are monic polynomials of degree 1 2n(n + 1), with integer coefficients. The first few are given in Table 1. Yablonskii [8] and Vorob’ev [7] expressed the rational solutions of the second Painlevé equation, PII(α) : w′′(z) = 2w(z)3 + zw(z) + α, with complex parameter α, in terms of logarithmic derivatives of the Yablonskii–Vorob’ev poly- nomials, as summerized in the following theorem: Theorem 1. PII(α) has a rational solution iff α = n ∈ Z. For n ∈ Z the rational solution is unique and if n ≥ 1, then it is equal to wn = Q′n−1 Qn−1 − Q′n Qn . The other rational solutions are given by w0 = 0 and for n ≥ 1, w−n = −wn. In [5] we proved the irrationality of the nonzero real roots of the Yablonskii–Vorob’ev poly- nomials, in this article we determine precisely the number of real roots of these polynomials. Clarkson [1] conjectured that the number of real roots of Qn equals [ n+1 2 ] , where [x] denotes the integer part of x for real numbers x. In Section 2 we prove this conjecture and obtain the following theorem, where Zn is defined as the set of real roots of Qn for n ∈ N. mailto:roffelse@science.ru.nl http://dx.doi.org/10.3842/SIGMA.2012.099 2 P. Roffelsen Table 1. Yablonskii–Vorob’ev polynomials Q2 = 4 + z3 Q3 =−80 + 20z3 + z6 Q4 = z ( 11200 + 60z6 + z9 ) Q5 =−6272000− 3136000z3 + 78400z6 + 2800z9 + 140z12 + z15 Q6 =−38635520000 + 19317760000z3 + 1448832000z6 − 17248000z9 + 627200z12 + 18480z15 + 280z18 + z21 Q7 = z ( −3093932441600000− 49723914240000z6 − 828731904000z9 + 13039488000z12 + 62092800z15 + 5174400z18 + 75600z21 + 504z24 + z27 ) Q8 =−991048439693312000000− 743286329769984000000z3 + 37164316488499200000z6 + 1769729356595200000z9 + 126696533483520000z12 + 407736096768000z15 − 6629855232000z18 + 124309785600z21 + 2018016000z24 + 32771200z27 + 240240z30 + 840z33 + z36 Theorem 2. For every n ∈ N, the number of real roots of Qn equals |Zn| = [ n+ 1 2 ] . (1) Furthermore for n ≥ 2, min(Zn−1) > min(Zn+1), max(Zn−1) < max(Zn+1). (2) The argument is inductive and an important ingredient is the fact that the real roots of Qn−1 and Qn+1 interlace, which is proven by Clarkson [1]. Kaneko and Ochiai [4] found a direct formula for the lowest degree coefficients of the Yablonskii–Vorob’ev polynomials Qn depending on n. In particular the sign of Qn(0) can be determined for n ∈ N. In Section 3 we use this to determine precisely the number of positive and the number of negative real roots of Qn, which yields to the following theorem. Theorem 3. Let n ∈ N, then the number of negative real roots of Qn is equal to |Zn ∩ (−∞, 0)| = [ n+ 1 3 ] . The number of positive real roots of Qn is equal to |Zn ∩ (0,∞)| =  [n 6 ] if n is even,[ n+ 3 6 ] if n is odd. As a consequence, for every n ∈ N, we can calculate the number of positive real poles of the rational solution wn with residue 1 and with residue −1, and the number of negative real poles of the rational solution wn with residue 1 and with residue −1. 2 Number of real roots Let P and Q be polynomials with no common real roots. We say that the real roots of P and Q interlace if and only if in between any two real roots of P , Q has a real root and in between any two real roots of Q, P has a real root. Throughout this paper we use the convention N = {0, 1, 2, . . .} and define N∗ := N \ {0}. On the Number of Real Roots of the Yablonskii–Vorob’ev Polynomials 3 Theorem 4. For every n ∈ N, Qn has only simple roots. Furthermore for n ≥ 1, Qn−1 and Qn+1 have no common roots and Qn−1 and Qn have no common roots. Proof. See Fukutani, Okamoto and Umemura [3]. � Theorem 5. For every n ≥ 1, the real roots of Qn−1 and Qn+1 interlace. Proof. See Clarkson [1]. � Let f, g : R → R be continuous functions and x ∈ R. We say that f crosses g positively at x if and only if f(x) = g(x) and there is a δ > 0 such that f(y) < g(y) for x − δ < y < x and f(y) > g(y) for x < y < x + δ. We say that f crosses g negatively at x if and only if f(x) = g(x) and there is a δ > 0 such that f(y) > g(y) for x − δ < y < x and f(y) < g(y) for x < y < x+ δ. So f crosses g negatively at x if and only if g crosses f positively at x. Let m ∈ N and suppose that f is m times differentiable, then we denote the mth derivative of f by f (m) with convention f (0) = f . Proposition 1. Let f, g : R→ R be analytic functions and x ∈ R. Then f crosses g positively at x if and only if there is an m ≥ 1 such that f (i)(x) = g(i)(x) for 0 ≤ i < m and f (m)(x) > g(m)(x). Similarly f crosses g negatively at x if and only if there is a m ≥ 1 such that f (i)(x) = g(i)(x) for 0 ≤ i < m and f (m)(x) < g(m)(x). Proof. This is proven easily using Taylor’s theorem. � Lemma 1. For every n ∈ N∗ we have Q′n+1Qn−1 −Qn+1Q ′ n−1 = (2n+ 1)Q2 n, (3a) Q′′n+1Qn−1 −Qn+1Q ′′ n−1 = 2(2n+ 1)QnQ ′ n, (3b) Q′′′n+1Qn−1 −Qn+1Q ′′′ n−1 = 2(2n+ 1) ( Q′n )2 + (2n+ 1)QnQ ′′ n. (3c) Proof. See Fukutani, Okamoto and Umemura [3]. � The following proposition contains some well-known properties of the Yablonskii–Vorob’ev poly- nomials, see for instance Clarkson and Mansfield [2]. Proposition 2. For every n ∈ N, Qn is a monic polynomial of degree 1 2n(n + 1) with integer coefficients. As a consequence, for n ≥ 1, lim x→∞ Qn(x) =∞, lim x→−∞ Qn(x) = { −∞ if n ≡ 1, 2 (mod 4), ∞ if n ≡ 0, 3 (mod 4). By Proposition 2, Qn has real coefficients and hence we can consider Qn as a real-valued function defined on the real line, that is, we consider Qn : R→ R. Proposition 3. Let n ∈ N∗, if x ∈ R is such that Qn+1 crosses Qn−1 positively at x, then Qn+1(x) = Qn−1(x) > 0. Similarly if x ∈ R is such that Qn+1 crosses Qn−1 negatively at x, then Qn+1(x) = Qn−1(x) < 0. 4 P. Roffelsen Proof. Let n ∈ N∗. Suppose x ∈ R is such that Qn+1 crosses Qn−1 positively at x. If Qn+1(x) = Qn−1(x) = 0, then Qn+1 and Qn−1 have a common root, which contradicts Theorem 4. Let us assume Qn+1(x) = Qn−1(x) < 0. (4) Then by Proposition 1, Q′n+1(x)−Q′n−1(x) ≥ 0. (5) Therefore, by equation (3a), 0 ≤ (2n+ 1)Qn(x)2 = Q′n+1(x)Qn−1(x)−Qn+1(x)Q′n−1(x) = Qn+1(x) ( Q′n+1(x)−Q′n−1(x) ) ≤ 0, where in the last inequality we used equation (4) and equation (5). We conclude (2n+ 1)Qn(x)2 = Qn+1(x) ( Q′n+1(x)−Q′n−1(x) ) = 0, so Qn(x) = 0 and Q′n+1(x) = Q′n−1(x). Therefore by equation (3b), Qn+1(x) ( Q′′n+1(x)−Q′′n−1(x) ) = Q′′n+1(x)Qn−1(x)−Qn+1(x)Q′′n−1(x) = 2(2n+ 1)Qn(x)Q′n(x) = 0. We conclude Q′′n+1(x) = Q′′n−1(x). Since Qn(x) = 0 and, by Theorem 4, Qn has only simple roots, we have Q′n(x) 6= 0. Therefore by (3c), Qn+1(x) ( Q′′′n+1(x)−Q′′′n−1(x) ) = Q′′′n+1(x)Qn−1(x)−Qn+1(x)Q′′′n−1(x) = 2(2n+ 1) ( Q′n(x) )2 + (2n+ 1)Qn(x)Q′′n(x) = 2(2n+ 1) ( Q′n(x) )2 > 0. Since Qn+1(x) < 0 we conclude Q′′′n+1(x) < Q′′′n−1(x). So Q′n+1(x) = Q′n−1(x), Q′′n+1(x) = Q′′n−1(x) but Q′′′n+1(x) < Q′′′n−1(x). Therefore by Proposition 1, Qn+1 does not cross Qn−1 positively at x and we have obtained a contradiction. We conclude that Qn+1(x) = Qn−1(x) > 0. The second part of the proposition is proven similar. � We prove theorem 2, using Theorem 5 and Proposition 3. Proof of Theorem 2. Observe that (1) is correct for n = 0, 1, 2, 3, 4. Furthermore it is easy to see that (2) is true for n = 1, 2, 3. We proceed by induction, suppose n ≥ 4 and |Zn−1| = [n 2 ] . Then Qn−1 has at least 2 real roots. By Theorem 5 the real roots of Qn−1 and Qn+1 interlace, hence Qn+1 has a real root. Let us define z := min(Zn+1), z1 := min(Zn−1), z2 := min(Zn−1 \ {z1}), On the Number of Real Roots of the Yablonskii–Vorob’ev Polynomials 5 so z is the smallest real root of Qn+1 and z1 and z2 are the smallest and second smallest real root of Qn−1 respectively. By Theorem 5 the real roots of Qn−1 and Qn+1 interlace, hence either z < z1 or z1 < z < z2. We prove that z1 < z < z2 can not be the case. Suppose z1 < z < z2 and suppose n ≡ 0, 1 (mod 4), then by Proposition 2, lim x→−∞ Qn−1(x) =∞. Hence Qn−1(x) > 0 for x < z1. Since Qn−1(z1) = 0, this implies Q′n−1(z1) ≤ 0. By Theorem 4, Qn−1 has only simple roots, hence Q′n−1(z1) 6= 0, so Q′n−1(z1) < 0. Therefore by Proposition 1, Qn−1 crosses 0 negatively at z1. Hence Qn−1(x) < 0 for z1 < x < z2, in particular Qn−1(z) < 0. (6) Since n ≡ 0, 1 (mod 4), we have by Proposition 2, lim x→−∞ Qn+1(x) = −∞. Therefore Qn+1(x) < 0 for x < z, in particular Qn+1(z1) < 0. Define the polynomial P := Qn+1 −Qn−1, then P (z1) = Qn+1(z1)−Qn−1(z1) = Qn+1(z1)− 0 < 0, and by equation (6), P (z) = Qn+1(z)−Qn−1(z) = 0−Qn−1(z) > 0. So P is a polynomial with P (z1) < 0, P (z) > 0 and z1 < z. Hence there is a z1 < x < z such that P crosses 0 positively at x, for instance x := inf {t ∈ (z1, z) | P (t) > 0} , has the desired properties. Since P = Qn+1 − Qn−1 crosses 0 positively at x, Qn+1 crosses Qn−1 positively at x. But z1 < x < z2, hence Qn+1(x) = Qn−1(x) < 0. (7) This contradicts Proposition 3. If n ≡ 2, 3 (mod 4), then by a similar argument, there is a z1 < x < z such that Qn+1 crosses Qn−1 negatively at x with Qn+1(x) = Qn−1(x) > 0, which again contradicts Proposition 3. We conclude that z1 < z < z2 can not be the case and hence z < z1, that is, min(Zn−1) > min(Zn+1). Let us define w := max(Zn+1), w1 := max(Zn−1), w2 := max(Zn−1 \ {w1}), 6 P. Roffelsen so w is the largest real root of Qn+1 and w1 and w2 are the largest and second largest real root of Qn−1 respectively. Suppose w1 > w, then by a similar argument as the above, there is a w2 < x < w such that Qn+1 crosses Qn−1 positively at x with Qn+1(x) = Qn−1(x) < 0. This is in contradiction with Proposition 3, so w1 < w, that is max(Zn−1) < max(Zn+1). (8) Let z1 < z2 < · · · < zk be the real roots of Qn−1 with k = [ n 2 ] and z′1 < z′2 < · · · < z′m be the real roots of Qn+1. Then by equations (7) and (8), z′1 < z1, zk < z′m and since by Theorem 5 the real roots of Qn−1 and Qn+1 interlace, we have z′1 < z1 < z′2 < z2 < z′3 < z3 < · · · < z′k−1 < zk−1 < z′k < zk < z′k+1 = z′m. Hence m = k + 1, that is, |Zn+1| = m = k + 1 = [n 2 ] + 1 = [ n+ 2 2 ] . The theorem follows by induction. � 3 Number of positive and negative real roots For a polynomial P we denote the set of real roots of P by ZP . Lemma 2. Let P and Q be polynomials with real coefficients, both a positive leading coefficient and only simple roots. Assume that the real roots of P and Q interlace. Furthermore suppose both P and Q have a real root and min(ZP ) > min(ZQ), max(ZP ) < max(ZQ). Then we have the following relations between the number of negative and positive real roots of P and Q, |ZQ ∩ (−∞, 0)| = |ZP ∩ (−∞, 0)|+  1 if P (0) = 0, 0 if Q(0) = 0, 1 if P (0) > 0 and Q(0) > 0, 0 if P (0) > 0 and Q(0) < 0, 0 if P (0) < 0 and Q(0) > 0, 1 if P (0) < 0 and Q(0) < 0, |ZQ ∩ (0,∞)| = |ZP ∩ (0,∞)|+  1 if P (0) = 0, 0 if Q(0) = 0, 0 if P (0) > 0 and Q(0) > 0, 1 if P (0) > 0 and Q(0) < 0, 1 if P (0) < 0 and Q(0) > 0, 0 if P (0) < 0 and Q(0) < 0. On the Number of Real Roots of the Yablonskii–Vorob’ev Polynomials 7 Proof. Let z1 > z2 > · · · > zn be the real roots of P and z′1 > z′2 > · · · > z′m be the real roots of Q. Observe that zn = min(ZP ) > min(ZQ) = z′m, z1 = max(ZP ) < max(ZQ) = z′1. Therefore, since the real roots of P and Q interlace, we have z′1 > z1 > z′2 > z2 > · · · > z′n > zn > z′n+1 = z′m, (9) In particular m = n+ 1. Suppose P (0) = 0. Then there is an unique 1 ≤ k ≤ n such that zk = 0. So equation (9) implies z′1 > z1 > z′2 > z2 > · · ·> z′k−1> zk−1> z′k > zk = 0 > z′k+1> zk+1> · · ·> z′n > zn > z′n+1. Therefore |ZQ ∩ (−∞, 0)| = n+ 1− (k + 1) + 1 = n− k + 1 = |ZP ∩ (−∞, 0)|+ 1, |ZQ ∩ (0,∞)| = k = |ZP ∩ (0,∞)|+ 1. The case Q(0) = 0 is proven similarly. Suppose P (0) > 0 and Q(0) > 0. Since P has a positive leading coefficient and is not constant, we have lim x→∞ P (x) =∞. Therefore, since z1 is the largest real root of P , P (x) > 0 for x > z1. Since P has only simple roots, P crosses 0 positively at z1, so P (x) < 0 for z2 < x < z1. Again since P has only simple roots, P crosses 0 negatively at z2, so P (x) > 0 for z3 < x < z2. Inductively we see that when 1 ≤ i < n is even, P (x) > 0 for zi+1 < x < zi, and when 1 ≤ i < n is odd, P (x) < 0 for zi+1 < x < zi. Furthermore P (x) > 0 for x < zn if n is even and P (x) < 0 for x < zn if n is odd. Similarly we have, for 1 ≤ i < n+ 1 even, Q(x) > 0 for z′i+1 < x < z′i, and for 1 ≤ i < n+ 1 odd, Q(x) < 0 for z′i+1 < x < z′i. Furthermore Q(x) < 0 for x < z′n+1, if n is even and Q(x) > 0 for x < z′n+1, if n is odd. There are three cases to consider: z1 > 0 > zn, z1 < 0 and zn > 0. We first assume z1 > 0 > zn. Then there is an unique 1 ≤ k ≤ n such that zk > 0 > zk+1. Since zk > 0 > zk+1 and P (0) > 0, we conclude that k is even. By equation (9), z′k > zk > 0 > zk+1 > z′k+2. Since k is even, Q(x) > 0 for z′k+1 < x < z′k and Q(x) < 0 for z′k+2 < x < z′k+1. But z′k+2 < 0 < z′k and Q(0) > 0, hence z′k+1 < 0 < z′k. Therefore |ZQ ∩ (−∞, 0)| = n+ 1− (k + 1) + 1 = |ZP ∩ (−∞, 0)|+ 1, |ZQ ∩ (0,∞)| = k = |ZP ∩ (0,∞)| . Let us assume z1 < 0, then P has no positive real roots. Observe Q(x) < 0 for z′2 < x < z′1. Suppose z′1 > 0, then z′2 > 0 since Q(0) > 0. Hence by equation (9), z′1 > z1 > z′2 > 0, so z1 > 0 and we have a contradiction. So z′1 < 0, hence all the real roots of Q are negative and we have |ZQ ∩ (−∞, 0)| = m = n+ 1 = |ZP ∩ (−∞, 0)|+ 1, |ZQ ∩ (0,∞)| = 0 = |ZP ∩ (0,∞)| . 8 P. Roffelsen Finally let us assume zn > 0, then P has no negative real roots. By equation (9), z′n > 0. Since P (0) > 0, P (x) > 0 for x < zn, therefore n must be even. Hence Q(x) > 0 for z′n+1 < x < z′n and Q(x) < 0 for x < z′n+1. Since z′n > 0 and Q(0) > 0, this implies z′n+1 < 0 < z′n. Therefore |ZQ ∩ (−∞, 0)| = 1 = |ZP ∩ (−∞, 0)|+ 1, |ZQ ∩ (0,∞)| = n = |ZP ∩ (0,∞)| . This ends our discussion of the case P (0) > 0 and Q(0) > 0. The remaining cases are proven similarly. � Taneda [6] proved that for n ∈ N: • if n ≡ 1 (mod 3), then Qn z ∈ Z[z3]; • if n 6≡ 1 (mod 3), then Qn ∈ Z[z3]. Hence Qn(0) = 0 if n ≡ 1 (mod 3). By Theorem 4, for every n ≥ 1, Qn−1 and Qn do not have a common root. Therefore Qn(0) = 0 if and only if n ≡ 1 (mod 3). Let us denote the coefficient of the lowest degree term in Qn by xn. That is, we define xn := Qn(0) if n 6≡ 1 (mod 3), and xn := Q′n(0) if n ≡ 1 (mod 3). In [5] we derived the following recursion for the xn: x0 = 1, x1 = 1 and xn+1xn−1 =  (2n+ 1)x2n if n ≡ 0 (mod 3), 4x2n if n ≡ 1 (mod 3), −(2n+ 1)x2n if n ≡ 2 (mod 3). (10) We remark that the above recursion can be used to determine the xn explicitly, a direct formula for xn is given by Kaneko and Ochiai [4]. Lemma 3. For every n ∈ N, sgn(Qn(0)) =  −1 if n ≡ 3, 5, 6, 8 (mod 12), 0 if n ≡ 1, 4, 7, 10 (mod 12), 1 if n ≡ 0, 2, 9, 11 (mod 12), where sgn denotes the sign function on R. Proof. By induction using recursion (10), we have sgn(xn) = { −1 if n ≡ 3, 5, 7, 6, 8, 10 (mod 12), 1 if n ≡ 0, 1, 2, 4, 9, 11 (mod 12). The lemma follows from this and the fact that Qn(0) = 0 if and only if n ≡ 1 (mod 3). � We apply Lemma 2 to the Yablonskii–Vorob’ev polynomials to prove Theorem 3. Proof of Theorem 3. Let n ≥ 2, then by Proposition 2, Theorem 4 and Theorem 5, P := Qn−1 and Q := Qn+1 are monic polynomials with only simple roots such that the real roots interlace. Furthermore by Theorem 2, both P and Q have a real root and min(ZP ) > min(ZQ), max(ZP ) < max(ZQ). On the Number of Real Roots of the Yablonskii–Vorob’ev Polynomials 9 So we can apply Lemma 2 together with Lemma 3 and obtain: |Zn+1 ∩ (−∞, 0)| = |Zn−1 ∩ (−∞, 0)|+ { 0 if n ≡ 0, 3 (mod 6), 1 if n ≡ 1, 2, 4, 5 (mod 6), |Zn+1 ∩ (0,∞)| = |Zn−1 ∩ (0,∞)|+ { 0 if n ≡ 0, 1 (mod 3), 1 if n ≡ 2 (mod 3). Observe that Z0 = ∅, Z1 = {0} and Z2 = { − 3 √ 4 } . The theorem is obtained by applying the above recursive formulas inductively. � Let us discuss an example. By Theorem 1, the unique rational solution of PII(α) for the parametervalue α := 21 is given by w21 = Q′20 Q20 − Q′21 Q21 . By Theorem 4, Q20 and Q21 do not have common roots and the roots of Q20 and Q21 are simple. Hence the poles of w21 are precisely the roots of Q20 and Q21, the roots of Q20 are poles of w21 with residue 1 and the roots of Q21 are poles of w21 with residue −1. By Theorem 2, Q20 has 10 real roots and by Theorem 3, 7 of them are negative and 3 of them are positive. Similarly Q21 has 11 real roots, 7 of them are negative and 4 of them are positive. Therefore w21 has 21 real poles, 10 with residue 1 and 11 with residue −1. More precisely w21 has 7 positive real poles, 3 with residue 1 and 4 with residue −1 and w21 has 14 negative real poles, 7 with residue 1 and 7 with residue −1. References [1] Clarkson P.A., Special polynomials associated with rational solutions of the Painlevé equations and appli- cations to soliton equations, Comput. Methods Funct. Theory 6 (2006), 329–401. [2] Clarkson P.A., Mansfield E.L., The second Painlevé equation, its hierarchy and associated special polyno- mials, Nonlinearity 16 (2003), R1–R26. [3] Fukutani S., Okamoto K., Umemura H., Special polynomials and the Hirota bilinear relations of the second and the fourth Painlevé equations, Nagoya Math. J. 159 (2000), 179–200. [4] Kaneko M., Ochiai H., On coefficients of Yablonskii–Vorob’ev polynomials, J. Math. Soc. Japan 55 (2003), 985–993, math.QA/0205178. [5] Roffelsen P., Irrationality of the roots of the Yablonskii–Vorob’ev polynomials and relations between them, SIGMA 6 (2010), 095, 11 pages, arXiv:1012.2933. [6] Taneda M., Remarks on the Yablonskii–Vorob’ev polynomials, Nagoya Math. J. 159 (2000), 87–111. [7] Vorob’ev A.P., On the rational solutions of the second Painlevé equation, Differ. Uravn. 1 (1965), 79–81. [8] Yablonskii A.I., On rational solutions of the second Painlevé equation, Vesti AN BSSR, Ser. Fiz.-Tech. Nauk (1959), no. 3, 30–35. http://dx.doi.org/10.1088/0951-7715/16/3/201 http://dx.doi.org/10.2969/jmsj/1191418760 http://arxiv.org/abs/math.QA/0205178 http://dx.doi.org/10.3842/SIGMA.2010.095 http://arxiv.org/abs/1012.2933 1 Introduction 2 Number of real roots 3 Number of positive and negative real roots References