On the Number of Real Roots of the Yablonskii-Vorob'ev Polynomials
We study the real roots of the Yablonskii-Vorob'ev polynomials, which are special polynomials used to represent rational solutions of the second Painlevé equation. It has been conjectured that the number of real roots of the nth Yablonskii-Vorob'ev polynomial equals [(n+1)/2]. We prove thi...
Gespeichert in:
Datum: | 2012 |
---|---|
1. Verfasser: | Roffelsen, P. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2012
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/149188 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | On the Number of Real Roots of the Yablonskii-Vorob'ev Polynomials / P. Roffelsen // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 8 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Irrationality of the Roots of the Yablonskii-Vorob'ev Polynomials and Relations between Them
von: Roffelsen, P.
Veröffentlicht: (2010) -
Faber polynomials with common roots
von: V. V. Savchuk
Veröffentlicht: (2014) -
Method for calculation of square roots in polynomial
von: Ju. Semenov
Veröffentlicht: (2019) -
Sections of Angles and n-th Roots of Numbers
von: Heineken, H.
Veröffentlicht: (2002) -
On Galois groups of prime degree polynomials with complex roots
von: Oz Ben-Shimol
Veröffentlicht: (2009)