A Note on the Automorphism Group of the Bielawski-Pidstrygach Quiver

We show that there exists a morphism between a group Γalg introduced by G. Wilson and a quotient of the group of tame symplectic automorphisms of the path algebra of a quiver introduced by Bielawski and Pidstrygach. The latter is known to act transitively on the phase space Cn,₂ of the Gibbons-Herms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2013
Hauptverfasser: Mencattini, I., Tacchella, A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2013
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/149193
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:A Note on the Automorphism Group of the Bielawski-Pidstrygach Quiver / I. Mencattini, A. Tacchella // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 16 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We show that there exists a morphism between a group Γalg introduced by G. Wilson and a quotient of the group of tame symplectic automorphisms of the path algebra of a quiver introduced by Bielawski and Pidstrygach. The latter is known to act transitively on the phase space Cn,₂ of the Gibbons-Hermsen integrable system of rank 2, and we prove that the subgroup generated by the image of Γalg together with a particular tame symplectic automorphism has the property that, for every pair of points of the regular and semisimple locus of Cn,₂, the subgroup contains an element sending the first point to the second.