A Note on the Automorphism Group of the Bielawski-Pidstrygach Quiver
We show that there exists a morphism between a group Γalg introduced by G. Wilson and a quotient of the group of tame symplectic automorphisms of the path algebra of a quiver introduced by Bielawski and Pidstrygach. The latter is known to act transitively on the phase space Cn,₂ of the Gibbons-Herms...
Gespeichert in:
Datum: | 2013 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2013
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/149193 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | A Note on the Automorphism Group of the Bielawski-Pidstrygach Quiver / I. Mencattini, A. Tacchella // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 16 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149193 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1491932019-02-20T01:26:00Z A Note on the Automorphism Group of the Bielawski-Pidstrygach Quiver Mencattini, I. Tacchella, A. We show that there exists a morphism between a group Γalg introduced by G. Wilson and a quotient of the group of tame symplectic automorphisms of the path algebra of a quiver introduced by Bielawski and Pidstrygach. The latter is known to act transitively on the phase space Cn,₂ of the Gibbons-Hermsen integrable system of rank 2, and we prove that the subgroup generated by the image of Γalg together with a particular tame symplectic automorphism has the property that, for every pair of points of the regular and semisimple locus of Cn,₂, the subgroup contains an element sending the first point to the second. 2013 Article A Note on the Automorphism Group of the Bielawski-Pidstrygach Quiver / I. Mencattini, A. Tacchella // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 16 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 37K10; 16G20; 14A22 DOI: http://dx.doi.org/10.3842/SIGMA.2013.037 http://dspace.nbuv.gov.ua/handle/123456789/149193 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We show that there exists a morphism between a group Γalg introduced by G. Wilson and a quotient of the group of tame symplectic automorphisms of the path algebra of a quiver introduced by Bielawski and Pidstrygach. The latter is known to act transitively on the phase space Cn,₂ of the Gibbons-Hermsen integrable system of rank 2, and we prove that the subgroup generated by the image of Γalg together with a particular tame symplectic automorphism has the property that, for every pair of points of the regular and semisimple locus of Cn,₂, the subgroup contains an element sending the first point to the second. |
format |
Article |
author |
Mencattini, I. Tacchella, A. |
spellingShingle |
Mencattini, I. Tacchella, A. A Note on the Automorphism Group of the Bielawski-Pidstrygach Quiver Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Mencattini, I. Tacchella, A. |
author_sort |
Mencattini, I. |
title |
A Note on the Automorphism Group of the Bielawski-Pidstrygach Quiver |
title_short |
A Note on the Automorphism Group of the Bielawski-Pidstrygach Quiver |
title_full |
A Note on the Automorphism Group of the Bielawski-Pidstrygach Quiver |
title_fullStr |
A Note on the Automorphism Group of the Bielawski-Pidstrygach Quiver |
title_full_unstemmed |
A Note on the Automorphism Group of the Bielawski-Pidstrygach Quiver |
title_sort |
note on the automorphism group of the bielawski-pidstrygach quiver |
publisher |
Інститут математики НАН України |
publishDate |
2013 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149193 |
citation_txt |
A Note on the Automorphism Group of the Bielawski-Pidstrygach Quiver / I. Mencattini, A. Tacchella // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 16 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT mencattinii anoteontheautomorphismgroupofthebielawskipidstrygachquiver AT tacchellaa anoteontheautomorphismgroupofthebielawskipidstrygachquiver AT mencattinii noteontheautomorphismgroupofthebielawskipidstrygachquiver AT tacchellaa noteontheautomorphismgroupofthebielawskipidstrygachquiver |
first_indexed |
2025-07-12T21:36:44Z |
last_indexed |
2025-07-12T21:36:44Z |
_version_ |
1837478672923099136 |
fulltext |
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 9 (2013), 037, 13 pages
A Note on the Automorphism Group
of the Bielawski–Pidstrygach Quiver
Igor MENCATTINI and Alberto TACCHELLA
ICMC - Universidade de São Paulo, Avenida Trabalhador São-carlense, 400,
13566-590 São Carlos - SP, Brasil
E-mail: igorre@icmc.usp.br, tacchella@icmc.usp.br
Received August 29, 2012, in final form April 26, 2013; Published online April 30, 2013
http://dx.doi.org/10.3842/SIGMA.2013.037
Abstract. We show that there exists a morphism between a group Γalg introduced by
G. Wilson and a quotient of the group of tame symplectic automorphisms of the path
algebra of a quiver introduced by Bielawski and Pidstrygach. The latter is known to act
transitively on the phase space Cn,2 of the Gibbons–Hermsen integrable system of rank 2,
and we prove that the subgroup generated by the image of Γalg together with a particular
tame symplectic automorphism has the property that, for every pair of points of the regular
and semisimple locus of Cn,2, the subgroup contains an element sending the first point to
the second.
Key words: Gibbons–Hermsen system; quiver varieties; noncommutative symplectic geo-
metry; integrable systems
2010 Mathematics Subject Classification: 37K10; 16G20; 14A22
1 Introduction
Let n and r be two positive natural numbers and denote by Matn,r(C) the complex vector space
of n× r matrices with entries in C. The space
Vn,r := Matn,n(C)⊕Matn,n(C)⊕Matn,r(C)⊕Matr,n(C)
can be viewed (using the identifications provided by the trace form) as the cotangent bundle of
the vector space Matn,n(C)⊕Matn,r(C), thus it comes equipped with the canonical holomorphic
symplectic form
ω(X,Y, v, w) = Tr(dX ∧ dY + dv ∧ dw). (1)
The group GLn(C) acts on Vn,r by
g.(X,Y, v, w) =
(
gXg−1, gY g−1, gv, wg−1
)
. (2)
This action is Hamiltonian, and the corresponding moment map µ : Vn,r → gln(C) is
µ(X,Y, v, w) = [X,Y ] + vw. (3)
For every complex number τ 6= 0 the action of GLn(C) on µ−1(τI) is free, hence we can perform
the symplectic quotient
Cn,r := µ−1(τI)/GLn(C). (4)
This family of smooth, irreducible affine algebraic varieties plays an important rôle in various
fields. They are examples of Nakajima quiver varieties [12], and they also arise in the work
of Nekrasov and Schwarz [13] on the moduli space of instantons on a non-commutative R4.
Finally, and most importantly from the perspective of the present work, they can be seen as
a completion of the phase space of a family of integrable systems that generalize the well-known
rational Calogero–Moser model.
mailto:igorre@icmc.usp.br
mailto:tacchella@icmc.usp.br
http://dx.doi.org/10.3842/SIGMA.2013.037
2 I. Mencattini and A. Tacchella
1.1 The Gibbons–Hermsen system
Let us briefly remind the reader of the definition of this integrable system, as it was introduced
by Gibbons and Hermsen in the paper [6]. Just like the (complexified) Calogero–Moser model,
the system describes the motion of n point particles in the complex plane interacting pairwise
according to a potential proportional to the second inverse power of their distance. In addition
to the Calogero–Moser case, however, each particle is endowed with some additional “internal”
degrees of freedom, parametrized by a vector vi in an auxiliary vector space V ' Cr and by its
canonical conjugate ξi in the dual space V ∗. The Hamiltonian of the system is given by
H(x, p, v, ξ) =
1
2
n∑
i=1
p2i +
1
2
n∑
i,j=1
ξi(vj)ξj(vi)
(xi − xj)2
. (5)
For each particle i there is the constraint ξi(vi) = −1 (notice that these quantities are constants
of the motion); moreover, two pairs (vi, ξi) and (v′i, ξ
′
i) are considered equivalent if vi = λv′i and
ξi = λ−1ξ′i for some λ ∈ C∗. When r = 1 these requirements completely fix the additional
degrees of freedom and we recover the classic rational Calogero–Moser system.
As it was proved by Gibbons and Hermsen, the Hamiltonian system described above is
completely integrable and its phase space can be identified with the manifold Cn,r. Let us
explain shortly how goes the proof of the complete integrability. Consider, for each k ∈ N and
α ∈ glr(C), the following function on the space Vn,r:
Jk,α = TrY kvαw. (6)
These functions are invariant with respect to the action (2), so that they descend to well defined
functions on the quotient space Cn,r; the Hamiltonian (5) coincides, up to scalar multiples,
with J2,I . The equations of motion determined by Jk,α are
Ẋ = Y k−1vαw + Y k−2vαwY + · · ·+ vαwY k−1,
Ẏ = 0,
v̇ = Y kvα,
ẇ = −αwY k,
where Ȧ = dA
dt . From this we can deduce that the Gibbons–Hermsen flows are complete. In
fact, since Y is constant, the equations for v and w are linear with constant coefficients. This
implies that the solutions of the last two equations are linear combinations of polynomials and
exponentials, forcing the solution of the first equation to be of the same form.
The Poisson brackets defined by the symplectic form (1) are given by
{Xij , Yk`} = δjkδi` and {vij , wk`} = δjkδi`,
all the others being equal to zero. Then a short calculation shows that the Poisson bracket
between two functions of the form (6) is
{Jm,α, J`,β} = Jm+`,[α,β], (7)
where [·, ·] is the matrix commutator. Notice that these are the same relations holding in the
Lie algebra of polynomial loops in glr(C): explicitly, the correspondence is given by
Jk,α ↔ zkα. (8)
From (7) follows in particular that {Jm,α, J`,β} = 0 if and only if [α, β] = 0. It is then possible to
find among the functions (6) a total of nr independent and mutually commuting first integrals
(e.g. by taking 1 ≤ k ≤ n and matrices α spanning the space of diagonal r× r matrices). These
results imply the complete integrability of the Gibbons–Hermsen system.
A Note on the Automorphism Group of the Bielawski–Pidstrygach Quiver 3
1.2 Some reminder about non-commutative symplectic geometry
In [3], Bielawski and Pidstrygach study the varieties (4) in the case r = 2 using the methods of
non-commutative symplectic geometry [4, 7], starting from the quiver
QBP = •1a 77
y
55 •2
xuu
. (9)
Recall that a quiver is simply a directed graph, possibly with loops and multiple edges. To every
quiver Q one can associate its double Q obtained by keeping the same vertices and adding, for
each arrow ρ : i → j, a corresponding arrow ρ∗ : j → i going in the opposite direction. The
path algebra (over C) of a quiver Q, denoted CQ, is the complex associative algebra which is
generated, as a linear space, by all the paths in Q and whose product is given by composition
of paths (or zero when two paths do not compose).
Now let A denote CQBP, the path algebra of the double of QBP. Denote also by TAut(A; c)
the group of (tame) non-commutative symplectomorphisms of this algebra (see Definition 3 in
the next section). One of the main results of [3] is that this group acts transitively on Cn,2. This
is to be compared with the well-known result for the case r = 1, first obtained by Berest and
Wilson in [2], according to which the group GCM of automorphisms of the first Weyl algebra
A1 = C〈a, a∗〉/(aa∗ − a∗a− 1)
acts transitively on the Calogero–Moser varieties Cn,1. This group can also be interpreted from
the perspective of non-commutative symplectic geometry in the following way. Let Q◦ denote
the quiver with one vertex and one loop a on it. The path algebra of its double Q◦ is just
the free associative algebra on the two generators a and a∗. The group of non-commutative
symplectomorphisms of this algebra is the group of automorphisms of C〈a, a∗〉 preserving the
commutator [a, a∗], and this group is isomorphic to GCM by a result of Makar-Limanov [9, 10].
Hence the rank 1 case fits into the same picture, by replacing the quiver (9) with Q◦.
It turns out that in this case these non-commutative symplectomorphisms have a very nat-
ural interpretation in terms of flows of the Calogero–Moser system. Indeed, a classic result of
Dixmier [5] implies that the group GCM is generated by a family of automorphisms Φp labeled
by a polynomial p in a∗ (say with zero constant term), defined by the following action on the
generators of A1:
Φp(a) = a− p′
(
a∗
)
, Φp
(
a∗
)
= a∗, (10)
together with the single automorphism F0 defined by
F0
(
a, a∗
)
= (−a∗, a), (11)
that we will call the formal Fourier transform. The action of these generators of GCM on Cn,1
is given by
Φp.(X,Y, v, w) = (X − p′(Y ), Y, v, w), F0.(X,Y, v, w) = (−Y,X, v, w).
In particular the action of Φp for a given polynomial p = p1a
∗+ p2a
∗2 + · · · corresponds exactly
to the action of a linear combination of the (mutually commuting) Calogero–Moser flows, i.e.
the flows of the Hamiltonian functions TrY k (for k ≥ 1) on Cn,1, with “times” (p1, p2, . . . ).
4 I. Mencattini and A. Tacchella
1.3 The main results of this note
Given the above, it is natural to ask if a similar picture holds also in the rank 2 case; namely, if
the action of the group TAut(A; c) considered by Bielawski and Pidstrygach on Cn,2 can be made
more concrete by interpreting its elements as flows of the Gibbons–Hermsen Hamiltonians (6).
One difficulty here is given by the fact that, while the Calogero–Moser Hamiltonians generate
an abelian Lie algebra, the Hamiltonians (6) generate a non-abelian one that cannot be trivially
exponentiated to get a Lie group. In other words, when r > 1 the maps of the form exp p(z),
where p is a polynomial map C→ glr(C), do not form a group. One way to avoid this problem
would be to simply take the group Γ of all holomorphic maps C → GL2(C), but this group
contains elements giving non-polynomial flows on Cn,2 which cannot be realized by the action
of an element in TAut(A; c).
In the unpublished notes [16], G. Wilson suggests to consider instead the subgroup of Γ
defined by
Γalg := Γalg
sc × PGL2(C[z]), (12)
where Γalg
sc is the subgroup consisting of maps of the form epI2 for some polynomial p with no
constant term and PGL2(C[z]) is seen as a subgroup of Γ in the obvious manner. (The choice of
this particular subgroup can be motivated also on purely algebraic grounds, as we will explain
in Section 4.)
Now denote by PTAut(A; c) the quotient of TAut(A; c) by the subgroup of scalar affine
symplectic automorphisms, whose action on Cn,2 is trivial (see Definition 4 below). The aim of
this note is to prove the following:
Theorem 1. There exists a morphism of groups
i : Γalg → PTAut(A; c), (13)
such that, if P denotes the subgroup of PTAut(A; c) generated by the image of i and the symplec-
tomorphism F defined by extending the automorphism (11) from CQ◦ to CQBP in the following
way:
F
(
a, a∗, x, x∗, y, y∗
)
:= (−a∗, a,−y∗, y,−x∗, x) (14)
and Rn,2 is the Zariski open subset of Cn,2 consisting of quadruples (X,Y, v, w) such that either X
or Y is regular semisimple (i.e., diagonalizable with distinct eigenvalues), then for every pair of
points ξ1, ξ2 ∈ Rn,2 there exists an element of P which maps ξ1 to ξ2.
Here Rn,2 should be seen as the rank 2 version of the analogue subset of the Calogero–Moser
space consisting of quadruples (X,Y, v, w) for which either X or Y are diagonalizable.
Remark 1. Theorem 1 is not a real transitivity result since the action of P does not preserve
the subset Rn,2. Unfortunately, it is not easy to understand if this action is transitive on the
whole of Cn,2 or not. The main difficulty comes from the fact that the proof of transitivity in [3]
for points outside of Rn,2 is not constructive; for this reason studying the action of PTAut(A; c)
on such points is much more difficult.
2 Preliminaries
For the remainder of this paper, r will be fixed and equal to 2. In this case, as noticed in [3],
we can obtain the manifold Cn,2 defined by (4) starting from the space of representations of the
double QBP of the quiver (9), in the following manner.
A Note on the Automorphism Group of the Bielawski–Pidstrygach Quiver 5
Let us denote by Rep(QBP, (n, 1)) the complex vector space of linear representations of QBP
with dimension vector (n, 1). A point in this space is a 6-tuple (A,B,X1, X2, Y1, Y2) consisting
of two n×n matrices, two n×1 matrices and two 1×n matrices that represent, respectively, the
arrows a, a∗, x, y∗, y and x∗ in QBP. This space is in bijection with Vn,2 via the following map:
A 7→ X, B 7→ Y, X1 7→ v•1, X2 7→ −v•2, Y1 7→ w2•, Y2 7→ w1•, (15)
where by v•i we denote the i-th column of the n × 2 matrix v, and similarly by wj• we denote
the j-th row of the 2× n matrix w.
On the space Rep(QBP, (n, 1)) there is a natural action of the group
G(n,1) = (GLn(C)×GL1(C))/C∗ ' GLn(C)
(where C∗ is seen as the subgroup of pairs of the form (λIn, λ) for some λ ∈ C∗) by change of
basis. This action is Hamiltonian, with moment map given by
ν(A,B,X1, X2, Y1, Y2) = ([A,B] +X1Y2 −X2Y1, Y1X2 − Y2X1) ∈ g(n,1). (16)
It is easy to verify that, under the bijection (15), this action of G(n,1) on Rep(QBP, (n, 1))
precisely coincides with the action of GLn(C) on Vn,2 given by (2). Finally, by comparing the
two moment maps (3) and (16), we conclude that Cn,2 is exactly the same as the symplectic
quotient µ−1(O)/G(n,1), where O denotes the coadjoint orbit of the point (τIn,−nτ) ∈ g(n,1).
As in the introduction, we let A stand for the path algebra CQBP of QBP; it is a non-
commutative algebra over the ring C2 = Ce1⊕Ce2, where the idempotents e1 and e2 correspond
to the trivial paths at vertices 1 and 2, respectively. For every p ∈ A we denote by Aut(A; p)
the subgroup of AutA that fixes p. In particular we will be interested in Aut(A; c), where
c := [a, a∗] + [x, x∗] + [y, y∗].
Definition 1. The group Aut(A; c) will be called the group of non-commutative symplectic
automorphisms of A [3, 8].
In what follows we will be interested in the following types of elements of Aut(A; c).
Definition 2. An automorphism of A will be called:
• strictly triangular if it fixes the arrows of QBP (i.e. a, x and y);
• strictly op-triangular if it fixes the arrows of Qop
BP (i.e. a∗, x∗, y∗).
An explicit description of strictly triangular symplectic automorphisms of CQBP is derived
in [3]. Namely, let F2 be the free algebra on two generators over C and define
L2 :=
F2
C + [F2, F2]
(17)
as a quotient of complex vector spaces. Call a and b (the image in L2 of) the two generators of F2.
Notice that L2 is just the vector space of necklace words in a and b (modulo scalars). Then to
every f ∈ L2 we can associate the automorphism Λ(f) ∈ AutA defined on the generators of A by
a 7→ a, a∗ 7→ a∗ +
∂f
∂a
,
x 7→ x, x∗ 7→ x∗ + y
∂f
∂b
,
y 7→ y, y∗ 7→ y∗ +
∂f
∂b
x,
6 I. Mencattini and A. Tacchella
where the substitution b = xy is understood and the C-linear maps
∂
∂a
,
∂
∂b
: L2 → F2
are the “necklace derivations” defined e.g. in [4, 7]. Explicitly, they act as usual derivations,
except that the letters in a necklace word must be cyclically permuted in order to always bring
the cancelled letter at the front.
Example 1. Let f1 = aab and f2 = aaab. Then
∂
∂a
f1 = ab+ ba, and
∂
∂a
f2 = aab+ aba+ baa.
More generally
∂
∂a
(anb) = an−1b+ an−2ba+ · · ·+ aban−2 + ban−1.
Notice that the result lives in F2, not in L2; in particular it is not a necklace word, but
a genuine word in the generators.
Theorem 2 (Proposition 7.2 in [3]). Every Λ(f) is symplectic, and every symplectic automor-
phism that fixes a, x and y lies in the image of Λ.
A completely analogous description holds for strictly op-triangular symplectic automor-
phisms. Indeed, let Lop
2 denote the same vector space (17), but call now a∗ and b∗ (the im-
age of) the two generators of F2. For every f ∈ Lop
2 , let Λ′(f) be the strictly op-triangular
automorphism of A defined by
a 7→ a+
∂f
∂a∗
, a∗ 7→ a∗,
x 7→ x+
∂f
∂b∗
y∗, x∗ 7→ x∗,
y 7→ y + x∗
∂f
∂b∗
, y∗ 7→ y∗,
where b∗ = y∗x∗. We claim that every Λ′(f) is symplectic, and every symplectic automorphism
of A that fixes a∗, x∗ and y∗ is of this form. This can easily be proved by recycling exactly
the same arguments used in [3] to prove Theorem 2. Alternatively, it is easy to verify that an
automorphism ϕ is strictly triangular if and only if the automorphism F ◦ ϕ ◦ F−1 is strictly
op-triangular, where F is the symplectic automorphism defined by (14). Thus we could simply
define
Λ′(f
(
a∗, b∗
)
) = F ◦ Λ(−f(a, b)) ◦ F−1. (18)
Another subgroup of AutA easy to deal with is provided by the affine automorphisms, i.e. affine
trasformations of the linear subspace spanned by a, a∗, x, x∗, y and y∗ in A. An automorphism
of this kind which moreover preserves c is completely specified by a pair (A, T ) where A is an
element of C2 o SL2(C) (the group of unimodular affine transformation of C2) acting on the
subspace spanned by a and a∗, while T is an element of GL2(C) acting as follows on the subspace
spanned by the other arrows:(
−x
y∗
)
7→ T
(
−x
y∗
)
,
(
x∗ y
)
7→
(
x∗ y
)
T−1.
Following [3], we denote by Affc the subgroup consisting of these affine symplectic automor-
phisms.
A Note on the Automorphism Group of the Bielawski–Pidstrygach Quiver 7
Definition 3. The group of tame symplectic automorphisms of A, denoted TAut(A; c), is the
subgroup of Aut(A; c) generated by strictly triangular and affine symplectic automorphisms.
Notice that the automorphism F defined by (14) belongs to Affc; it corresponds to the pair
determined by
(
0 −1
1 0
)
∈ SL2(C) and
(
0 1
−1 0
)
∈ GL2(C). It then follows immediately from the
relation (18) that TAut(A; c) can also be generated by the strictly op-triangular automorphisms
and by the affine symplectic ones.
Let Z be the subgroup of TAut(A; c) consisting of symplectic affine automorphism of the
form (I, T ) where I is the identity of C2 o SL(2,C) and T belongs to the center of GL2(C) (i.e.
T = λI for some λ ∈ C∗). Then it is easy to see that the action of Z on Cn,2 is trivial; hence
the action of TAut(A; c) on Cn,2 descends through the quotient TAut(A; c)/Z.
Definition 4. We denote the quotient TAut(A; c)/Z by PTAut(A; c).
An essential rôle in the sequel will be played by the following result, first proved by Nagao
in [11] and later rederived in a more general context using the Bass–Serre theory of groups
acting on graphs [14]. Let K be a field, and denote by B2(K[z]) the subgroup of lower triangular
matrices in GL2(K[z]) and by B2(K) the subgroup of lower triangular matrices in GL2(K).
Theorem 3 (Nagao). The group GL2(K[z]) coincides with the free product with amalgamation
GL2(K) ∗B2(K) B2(K[z]).
Suppose now that K = C. Then, as is well known, we have that B2(C) = U2(C) o D2(C),
where U2(C) is the (normal) subgroup of lower unitriangular matrices (= unipotent elements
in B2(C)) and D2(C) is the subgroup of diagonal matrices. Exactly the same result holds also
for B2(C[z]): namely, the latter group is isomorphic to the semidirect product of its normal
subgroup U2(C[z]) consisting of matrices of the form
(
1 0
p 1
)
for some p ∈ C[z] (which is in fact
isomorphic to the abelian group (C[z],+)) and its subgroup of diagonal matrices, which is again
D2(C) ' C∗×C∗. It follows that every element of B2(C[z]) can be uniquely written as a product
of the form ud with u ∈ U2(C[z]) and d ∈ D2(C). Since(
α 0
0 β
)(
1 0
p 1
)(
α−1 0
0 β−1
)
=
(
1 0
β
αp 1
)
,
we see that, abstractly, the action of C∗×C∗ on (C[z],+) defining the above semidirect product
structure is given by
(α, β).p =
β
α
p. (19)
3 Proof of the results
Our strategy to define the morphism (13) is the following. First, we identify the action on Cn,2 of
some strictly op-triangular automorphism in TAut(A; c) with the action of a unipotent matrix of
the form
(
1 0
p 1
)
via the flow induced by some particular Hamiltonians of the Gibbons–Hermsen
system (using Theorem 4 below). In this way we obtain an embedding of the group U2(C[z]) in
TAut(A; c) which is easily extended to the whole subgroup B2(C[z]). The subgroup GL2(C) ⊂
GL2(C[z]) consisting of invertible scalar matrices can also be embedded in TAut(A; c) using
affine automorphisms acting only on the subspace spanned by x, x∗, y and y∗. By Theorem 3
these embeddings extend to a unique morphism of groups k : GL2(C[z])→ TAut(A; c). Finally
we use k to induce the desired morphism i : Γalg → PTAut(A; c).
An automorphism ϕ ∈ AutA acts on Rep(QBP, (n, 1)), and hence on Cn,2, in the following
way. For every arrow r in QBP, ϕ(r) is a non-commutative polynomial in the arrows of QBP; in
8 I. Mencattini and A. Tacchella
particular we can evaluate it on a point p = (A,B,X1, X2, Y1, Y2) (by mapping each arrow to
its matrix representation), and this gives a matrix ϕ(r)(p). Then ϕ sends p to the point
(ϕ(a)(p), ϕ
(
a∗
)
(p), ϕ(x)(p), ϕ(y∗)(p), ϕ(y)(p), ϕ(x∗)(p)). (20)
Example 2. If ϕ is the strictly triangular automorphism Λ(f) with f = aab then
∂f
∂a
= ab+ ba and
∂f
∂b
= aa,
so that ϕ acts by the formula
ϕ.(A,B,X1, X2, Y1, Y2) =
(
A,B +AX1Y1 +X1Y1A,X1, X2 +A2X1, Y1, Y2 + Y1A
2
)
.
We are now going to prove a result that enables us to identify the action of some Hamil-
tonians functions on Cn,2 with the action of some triangular (or op-triangular) automorphisms
in TAut(A; c). This correspondence will be established in much more generality than what is
needed in the sequel, since it may be of independent interest.
Let us define a linear map H from the complex vector space L2 defined in (17) to the ring of
regular functions on Cn,2 as follows. Any element of L2 can be written as a linear combination
of necklace words f = ak1b`1 · · · aknb`n with n ≥ 1 and k1, . . . , kn, `1, . . . , `n ∈ N not all zero. We
set
H(f) := TrXk1(ve12w)`1 · · ·Xkn(ve12w)`n (21)
(where e12 := ( 0 1
0 0 )) and extend this by linearity to the whole of L2. Similarly, we can define
a map H ′ from Lop
2 to the ring of regular functions on Cn,2 by sending the generic necklace word
f = a∗k1b∗`1 · · · a∗knb∗`n in a∗ and b∗ to
H ′(f) := TrY k1(ve21w)`1 · · ·Y kn(ve21w)`n , (22)
where e21 := ( 0 0
1 0 ).
Theorem 4. The action determined by the flow at unit time of the Hamiltonian function H(f)
(resp. H ′(f)) on Cn,2 coincides with the action (20) of the automorphism Λ(−f) (resp. Λ′(−f)).
Proof. By a straightforward, if tedious, calculation one can verify that the flow of H(f) is
given by solving the following system of differential equations:
Ẋ = 0, (23a)
Ẏ = −
n∑
j=1
kj∑
ij=1
Xkj−ij (ve12w)`jXkj+1(ve12w)`j+1 · · ·Xkj−1(ve12w)`j−1Xij−1, (23b)
v̇ =
n∑
j=1
`j∑
ij=1
(ve12w)`j−ijXkj+1(ve12w)`j+1 · · ·Xkj (ve12w)ij−1ve12, (23c)
ẇ = −e12w
n∑
j=1
`j∑
ij=1
(ve12w)`j−ijXkj+1(ve12w)`j+1 · · ·Xkj (ve12w)ij−1, (23d)
where j is understood as a cyclic index modulo n, i.e. kn+1 = k1 and `n+1 = `1. These equations
can be easily integrated. Indeed, equation (23a) and “half” of equations (23c) and (23d) tell
us that X, v•1 and w2• are constants; then the time derivatives of v•2, w1• and Y involve only
A Note on the Automorphism Group of the Bielawski–Pidstrygach Quiver 9
these constants, so that the flows are linear in time. Thus the non-trivial part of the flow is
given by
Y (t) = Y − t
n∑
j=1
kj∑
ij=1
Xkj−ij (v•1w2•)
`j · · · (v•1w2•)
`j−1Xij−1,
v•2(t) = v•2 + t
n∑
j=1
`j∑
ij=1
(v•1w2•)
`j−ijXkj+1 · · ·Xkj (v•1w2•)
ij−1v•1,
w1•(t) = w1• − tw2•
n∑
j=1
`j∑
ij=1
(v•1w2•)
`j−ijXkj+1 · · ·Xkj (v•1w2•)
ij−1.
Using the map (15) we can see the above as the following flow on Rep(QBP, (n, 1)):
A(t) = A, X1(t) = X1, Y1(t) = Y1,
B(t) = B − t
n∑
j=1
kj∑
ij=1
Akj−ij (X1Y1)
`j · · · (X1Y1)
`j−1Aij−1,
X2(t) = X2 − t
n∑
j=1
`j∑
ij=1
(X1Y1)
`j−ijAkj+1 · · ·Akj (X1Y1)
ij−1X1,
Y2(t) = Y2 − tY1
n∑
j=1
`j∑
ij=1
(X1Y1)
`j−ijAkj+1 · · ·Akj (X1Y1)
ij−1.
Evaluating at t = 1 we recover exactly the action of the automorphism Λ(−f), as can be easily
verified. A completely analogous calculation shows that the same relationship holds in the
“opposite” case between H ′(f) and Λ′(−f). �
Remark 2. The Poisson brackets between the Hamiltonians (21), (22) are easily calculated
in the following manner. The vector spaces L2 and Lop
2 can be seen as subspaces of the path
algebra CQ8, where Q8 is the quiver with a single vertex and two loops a and b on it. Then the
four n×n matrices (X,Y, ve12w, ve21w) define a point in the representation space Rep(Q8, (n))
and the maps H and H ′ are just the restrictions to CQ8/[CQ8,CQ8] and CQop
8 /[CQ
op
8 ,CQ
op
8 ],
respectively, of the map
ψ :
CQ8
[CQ8,CQ8]
→ C[Rep(Q8, (n))]GLn(C)
defined by Ginzburg in [7]. There it is proved that ψ is in fact a Lie algebra morphism, so that
the Poisson bracket between H(f1) and H(f2) (or H ′(f2)) is simply the image of the necklace
Lie bracket [f1, f2] under ψ. It follows in particular that all the Hamiltonians in the image of H
Poisson-commute (and similarly for H ′); however {H(f1), H
′(f2)} 6= 0 in general.
Notice that the usual Hamiltonians (6) of the Gibbons–Hermsen system can only give a poly-
nomial flow on Cn,2 when α is either the identity (in which case TrY kvw = τ TrY k, as a conse-
quence of the moment map equation [X,Y ] + vw = τI) or a nilpotent matrix. In what follows
we will consider in particular the Hamiltonians Jk,e21 = H ′(a∗kb∗) (but see Remark 4 below).
Under the correspondence (8), such Hamiltonians correspond to matrices of the form zke21. The
exponential of a linear combination of matrices of this kind,∑
k
pkz
ke21
10 I. Mencattini and A. Tacchella
is the lower unitriangular matrix
(
1 0
p 1
)
, where p is the polynomial with coefficients pk. Theo-
rem 4 then suggests that these elements of GL2(C[z]) should correspond to the op-triangular
automorphisms Λ′(−p(a∗)b∗) in TAut(A; c). We are now going to prove Theorem 1 by building
the morphism i along those lines.
Proof of Theorem 1. In view of Theorem 3, the first goal is to define two morphisms of
groups
j1 : GL2(C)→ TAut(A; c) and j2 : B2(C[z])→ TAut(A; c),
that agree on B2(C). We define j1 by sending T ∈ GL2(C) to the affine symplectic automor-
phism determined by the pair (I, T ), where I = 0 ⊕ Id is the identity in C2 o SL(2,C). To
define j2, notice first that the subgroup of TAut(A; c) consisting of strictly op-triangular auto-
morphisms of the form Λ′(−p(a∗)b∗) for some polynomial p is isomorphic to (C[z],+). Moreover,
let d = diag(α, β) be any diagonal matrix in GL2(C); then a simple calculation shows that, for
every p ∈ C[z],
(I, d) ◦ Λ′(−p(a∗)b∗) ◦ (I, d−1) = Λ′
(
−β
α
p(a∗)b∗
)
.
This is exactly the action (19) defining the semidirect product structure of B2(C[z]), hence
we can define j2 as the unique morphism of groups sending a lower unitriangular matrix u =(
1 0
p 1
)
∈ U2(C[z]) to the automorphism Λ′(−p(a∗)b∗) and a diagonal matrix d ∈ D2(C) to the
affine automorphism (I, d).
With these definitions it is immediate to verify that j2 agrees with j1 on B2(C); then by
the universal property of amalgamated free products there exists a unique morphism of groups
k : GL2(C[z]) → TAut(A; c) whose restriction to GL2(C), resp. B2(C[z]), coincides with j1,
resp. j2. It is clear that k descends to a well-defined morphism of groups k̃ : PGL2(C[z]) →
PTAut(A; c). We extend k̃ to Γalg = Γalg
sc ×PGL2(C[z]) as follows. Let us define a morphism of
groups j3 : Γalg
sc → TAut(A; c) by sending the generic scalar matrix epI (where p ∈ zC[z]) to the
automorphism Λ′(−p(a∗)), whose only nontrivial action on the generators is
a 7→ a− ∂
∂a∗
p(a∗). (24)
It is easy to verify that such an automorphism commutes with every element in the image
of k̃, since it commutes with both elements in the image of Λ′ and affine automorphisms of the
form (I, T ). Thus we can define i by mapping the generic element epM ∈ Γalg to the product
j3(e
p)k̃(M) in PTAut(A; c).
Now consider the subgroup P of PTAut(A; c) generated by the image of i and the affine
symplectic automorphism F defined by (14). Clearly, P acts on Cn,2 by restriction of the action
of PTAut(A; c). Recall from [3] that the strategy to prove the transitivity of the latter action is
first to move every point of Cn,2 into the submanifold
Mn := { (X,Y, v, w) ∈ Cn,2 | v•2 = 0, w2• = 0 }
(isomorphic to the Calogero–Moser space), and then use the fact that TAut(A; c) contains a copy
of the group GCM of symplectic automorphisms of the quiver Q◦ which itself acts transitively
on this submanifold. As recalled in the introduction, the copy of GCM inside TAut(A; c) is
generated exactly by the automorphisms of the form (24) for some p ∈ zC[z] together with the
single affine symplectic automorphism (
(
0 −1
1 0
)
, I). All of them belong to P (the latter being
simply the composition of F with the image under j1 of
(
0 −1
1 0
)
), so the only problem is again
to move every point of Cn,2 into Mn using an element of P.
A Note on the Automorphism Group of the Bielawski–Pidstrygach Quiver 11
Now take a point p = (X,Y, ( v•1 v•2 ) , (w1•
w2• )) ∈ Rn,2 for which X is not regular semisim-
ple; then Y must be (otherwise p /∈ Rn,2) and the automorphism F−1 sends p to the point
(Y,−X, ( v•2 v•1 ) , (w2•
w1• )) whose first entry is regular semisimple. Hence it is enough to prove
that points (X,Y, v, w) for which X is regular semisimple can be taken into Mn by the group P.
But Lemma 8.4 in [3] says exactly that one can map such a point to Mn using only triangular
automorphisms of the form Λ(−p(a)b) for some polynomial p and affine ones of the form (I, T )
for some T ∈ PGL2(C). Using the relation (18) we see that all of these automorphisms belong
to P, hence the result follows. �
Remark 3. Using the fact that j1 and j2 are injective and their image is disjoint it is possible to
show that the map k defined in the above proof is injective on the reduced words in GL2(C[z])
of length at most 4. However, we could not prove that k is injective in general.
Remark 4. The flow determined by a linear combination of the Hamiltonians Jk,e12 should
correspond to an upper unitriangular matrix in PGL2(C[z]). Using the equality(
1 p
0 1
)
=
(
0 1
1 0
)(
1 0
p 1
)(
0 1
1 0
)
one can see that the map i defined above sends such matrices to tame symplectic automorphisms
of the form
a 7→ a+
∂
∂a∗
(−p(a∗)b∗), x∗ 7→ x∗ − yp(a∗), y∗ 7→ y∗ − p(a∗)x,
which are neither strictly triangular nor strictly op-triangular. This is due to the fact that the
Hamiltonians Jk,e12 = TrY kve12w belong neither to the image of H nor to that of H ′.
4 Conclusions and outlook
We would like to conclude by trying to put into a wider perspective the results obtained in the
present work. Let us start by reviewing the situation in the Calogero–Moser case, i.e. for r = 1.
In [2] it is proved that there exists a bijective map
β1 :
⊔
n∈N
Cn,1 →M1, (25)
whereM1 is the set of isomorphism classes of nonzero right ideals in the first Weyl algebra A1.
Moreover, the group GCM of automorphisms of A1 acts on both the varieties Cn,1 (as shown in
the introduction) and onM1 (by its natural action); the map (25) intertwines these two actions,
and in fact it can be characterized as the unique map doing so [15].
Consider now the case r > 1. Let B1 denote the localization of the Weyl algebra A1 with
respect to nonzero polynomials. In the paper [1] the following correspondence between the
manifolds Cn,r and a certain kind of right sub-A1-modules in Br
1 = B1 × · · · × B1 (r times) is
defined.
Call a sub-A1-module M in Br
1 fat if there exists a polynomial p ∈ C[z] such that
pAr1 ⊆M ⊆ p−1Ar1
and denote by GrD(r) the set of fat sub-A1-modules in Br
1. For every M ∈ GrD(r), let σ(M)
be the linear subspace in C(z)r consisting of all the leading coefficients of the operators in M .
Finally, define Mr := σ−1(C[z]r). Then Baranovsky, Ginzburg and Kuznetsov prove that for
each r ∈ N there is a bijection
βr :
⊔
n∈N
Cn,r →Mr.
12 I. Mencattini and A. Tacchella
This map should play the same rôle of the map (25) in the case r = 1, hence one could hope
that βr is also uniquely determined by some equivariance property. Unfortunately, when r > 1
it is not clear which group should take the place of GCM ' AutA1.
A possible candidate is the group of automorphisms of the matrix algebra Matr,r(A1), which
reduces to AutA1 when r = 1. In this regard, the notes [16] provide the following intriguing
argument. Denote with Γ(r) the group of holomorphic maps C → GLr(C), and consider the
following subgroup of Γ(r), which represents the obvious generalization of the group (12) to the
case r ≥ 2:
Γalg(r) := Γalg
sc (r)× PGLr(C[z]),
where again Γalg
sc (r) consists of maps of the form epIr for some p ∈ zC[z]. Now let Aan1 ⊃ A1
stand for the algebra of differential operators on C with entire coefficients. For every γ ∈ Γ(r),
the map D 7→ γDγ−1 is an automorphism of the algebra Matr,r(A
an
1 ), and Wilson proves in [16]
that Γalg(r) is exactly the subgroup of Γ(r) that preserves the subalgebra Matr,r(A1). Hence
Γalg(r) can actually be seen as a subgroup of Aut Matr,r(A1).
It turns out that Aut Matr,r(A1) is the semidirect product of the subgroup of inner automor-
phisms of Matr,r(A1) and a copy of AutA1, acting separately on each matrix entry. In other
words, every automorphism of Matr,r(A1) has the form
D 7→ Tσ(D)T−1
for some T ∈ GLr(A1) and σ ∈ AutA1. Such an automorphism belongs to Γalg(r) exactly
when T is a matrix of polynomials and σ acts as θ 7→ epθe−p (i.e. it belongs to the family Φp
defined by the equations (10)). Clearly, the subgroup of Aut Matr,r(A1) isomorphic to AutA1
acts on right sub-A1-modules of Br
1 (by σ.M := σ(M), the same prescription working in the
r = 1 case) and preserve fatness. However it is not clear to us, at least at the moment, if this
definition can be extended to give an action of Γalg(r) (or the whole group Aut Matr,r(A1)) on
fat submodules.
Finally, as a referee pointed out to us, it appears that much of the results of the paper [3] can
be generalized to the case r > 2; it would be interesting to see if the constructions in this paper
can also be generalized to higher values of r. We hope to address these problems in a future
publication.
Acknowledgements
The authors would like to thank Claudio Bartocci, Yuri Berest, Roger Bielawski, Ugo Bruzzo,
Benoit Dherin, Letterio Gatto, Victor Ginzburg, Hiraku Nakajima, George Wilson and the
anonymous referees for some useful comments about a previous version of this manuscript. Both
authors are grateful to FAPESP for supporting the present work with the grants 2010/19201-8
(I.M.) and 2011/09782-6 (A.T.).
References
[1] Baranovsky V., Ginzburg V., Kuznetsov A., Wilson’s Grassmannian and a noncommutative quadric, Int.
Math. Res. Not. 2003 (2003), 1155–1197, math.AG/0203116.
[2] Berest Y., Wilson G., Automorphisms and ideals of the Weyl algebra, Math. Ann. 318 (2000), 127–147,
math.QA/0102190.
[3] Bielawski R., Pidstrygach V., On the symplectic structure of instanton moduli spaces, Adv. Math. 226
(2011), 2796–2824, arXiv:0812.4918.
[4] Bocklandt R., Le Bruyn L., Necklace Lie algebras and noncommutative symplectic geometry, Math. Z. 240
(2002), 141–167, math.AG/0010030.
http://dx.doi.org/10.1155/S1073792803210126
http://dx.doi.org/10.1155/S1073792803210126
http://arxiv.org/abs/math.AG/0203116
http://dx.doi.org/10.1007/s002080000115
http://arxiv.org/abs/math.QA/0102190
http://dx.doi.org/10.1016/j.aim.2010.10.001
http://arxiv.org/abs/0812.4918
http://dx.doi.org/10.1007/s002090100366
http://arxiv.org/abs/math.AG/0010030
A Note on the Automorphism Group of the Bielawski–Pidstrygach Quiver 13
[5] Dixmier J., Sur les algèbres de Weyl, Bull. Soc. Math. France 96 (1968), 209–242.
[6] Gibbons J., Hermsen T., A generalisation of the Calogero–Moser system, Phys. D 11 (1984), 337–348.
[7] Ginzburg V., Non-commutative symplectic geometry, quiver varieties, and operads, Math. Res. Lett. 8
(2001), 377–400, math.QA/0005165.
[8] Kontsevich M., Formal (non)commutative symplectic geometry, in The Gel’fand Mathematical Seminars,
1990–1992, Birkhäuser Boston, Boston, MA, 1993, 173–187.
[9] Makar-Limanov L.G., On automorphisms of Weyl algebra, Bull. Soc. Math. France 112 (1984), 359–363.
[10] Makar-Limanov L.G., The automorphisms of the free algebra with two generators, Funct. Anal. Appl. 4
(1970), 262–264.
[11] Nagao H., On GL(2,K[x]), J. Inst. Polytech. Osaka City Univ. Ser. A 10 (1959), 117–121.
[12] Nakajima H., Instantons on ALE spaces, quiver varieties, and Kac–Moody algebras, Duke Math. J. 76
(1994), 365–416.
[13] Nekrasov N., Schwarz A., Instantons on noncommutative R4, and (2, 0) superconformal six-dimensional
theory, Comm. Math. Phys. 198 (1998), 689–703, hep-th/9802068.
[14] Serre J.P., Trees, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003.
[15] Wilson G., Equivariant maps between Calogero–Moser spaces, arXiv:1009.3660.
[16] Wilson G., Notes on the vector adelic Grassmannian, 2009, unpublished.
http://dx.doi.org/10.1016/0167-2789(84)90015-0
http://arxiv.org/abs/math.QA/0005165
http://dx.doi.org/10.1007/BF01075252
http://dx.doi.org/10.1215/S0012-7094-94-07613-8
http://dx.doi.org/10.1007/s002200050490
http://arxiv.org/abs/hep-th/9802068
http://arxiv.org/abs/1009.3660
1 Introduction
1.1 The Gibbons-Hermsen system
1.2 Some reminder about non-commutative symplectic geometry
1.3 The main results of this note
2 Preliminaries
3 Proof of the results
4 Conclusions and outlook
References
|