A Quasi-Lie Schemes Approach to Second-Order Gambier Equations

A quasi-Lie scheme is a geometric structure that provides t-dependent changes of variables transforming members of an associated family of systems of first-order differential equations into members of the same family. In this note we introduce two quasi-Lie schemes for studying second-order Gambier...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2013
Hauptverfasser: Cariñena, J.F., Guha, P., de Lucas, J.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2013
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/149230
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:A Quasi-Lie Schemes Approach to Second-Order Gambier Equations / J.F. Cariñena, P. Guha, L. de Lucas // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 56 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149230
record_format dspace
fulltext
spelling irk-123456789-1492302019-02-20T01:23:13Z A Quasi-Lie Schemes Approach to Second-Order Gambier Equations Cariñena, J.F. Guha, P. de Lucas, J. A quasi-Lie scheme is a geometric structure that provides t-dependent changes of variables transforming members of an associated family of systems of first-order differential equations into members of the same family. In this note we introduce two quasi-Lie schemes for studying second-order Gambier equations in a geometric way. This allows us to study the transformation of these equations into simpler canonical forms, which solves a gap in the previous literature, and other relevant differential equations, which leads to derive new constants of motion for families of second-order Gambier equations. Additionally, we describe general solutions of certain second-order Gambier equations in terms of particular solutions of Riccati equations, linear systems, and t-dependent frequency harmonic oscillators. 2013 Article A Quasi-Lie Schemes Approach to Second-Order Gambier Equations / J.F. Cariñena, P. Guha, L. de Lucas // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 56 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 34A26; 34A05; 34A34; 17B66; 53Z05 DOI: http://dx.doi.org/10.3842/SIGMA.2013.026 http://dspace.nbuv.gov.ua/handle/123456789/149230 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A quasi-Lie scheme is a geometric structure that provides t-dependent changes of variables transforming members of an associated family of systems of first-order differential equations into members of the same family. In this note we introduce two quasi-Lie schemes for studying second-order Gambier equations in a geometric way. This allows us to study the transformation of these equations into simpler canonical forms, which solves a gap in the previous literature, and other relevant differential equations, which leads to derive new constants of motion for families of second-order Gambier equations. Additionally, we describe general solutions of certain second-order Gambier equations in terms of particular solutions of Riccati equations, linear systems, and t-dependent frequency harmonic oscillators.
format Article
author Cariñena, J.F.
Guha, P.
de Lucas, J.
spellingShingle Cariñena, J.F.
Guha, P.
de Lucas, J.
A Quasi-Lie Schemes Approach to Second-Order Gambier Equations
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Cariñena, J.F.
Guha, P.
de Lucas, J.
author_sort Cariñena, J.F.
title A Quasi-Lie Schemes Approach to Second-Order Gambier Equations
title_short A Quasi-Lie Schemes Approach to Second-Order Gambier Equations
title_full A Quasi-Lie Schemes Approach to Second-Order Gambier Equations
title_fullStr A Quasi-Lie Schemes Approach to Second-Order Gambier Equations
title_full_unstemmed A Quasi-Lie Schemes Approach to Second-Order Gambier Equations
title_sort quasi-lie schemes approach to second-order gambier equations
publisher Інститут математики НАН України
publishDate 2013
url http://dspace.nbuv.gov.ua/handle/123456789/149230
citation_txt A Quasi-Lie Schemes Approach to Second-Order Gambier Equations / J.F. Cariñena, P. Guha, L. de Lucas // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 56 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT carinenajf aquasilieschemesapproachtosecondordergambierequations
AT guhap aquasilieschemesapproachtosecondordergambierequations
AT delucasj aquasilieschemesapproachtosecondordergambierequations
AT carinenajf quasilieschemesapproachtosecondordergambierequations
AT guhap quasilieschemesapproachtosecondordergambierequations
AT delucasj quasilieschemesapproachtosecondordergambierequations
first_indexed 2025-07-12T21:08:53Z
last_indexed 2025-07-12T21:08:53Z
_version_ 1837476914067931136