Pentagon Relations in Direct Sums and Grassmann Algebras
We construct vast families of orthogonal operators obeying pentagon relation in a direct sum of three n-dimensional vector spaces. As a consequence, we obtain pentagon relations in Grassmann algebras, making a far reaching generalization of exotic Reidemeister torsions.
Gespeichert in:
Datum: | 2013 |
---|---|
Hauptverfasser: | Korepanov, I.G., Sadykov, N.M. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2013
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/149234 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Pentagon Relations in Direct Sums and Grassmann Algebras / I.G. Korepanov, N.M. Sadykov // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 16 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Parameterizing the Simplest Grassmann-Gaussian Relations for Pachner Move 3-3
von: Korepanov, I.G., et al.
Veröffentlicht: (2013) -
Relations in Grassmann Algebra Corresponding to Three- and Four-Dimensional Pachner Moves
von: Korepanov, I.G.
Veröffentlicht: (2011) -
The central polynomials for the finite dimensional Grassmann algebras
von: Koshlukov, P., et al.
Veröffentlicht: (2009) -
The central polynomials for the finite dimensional Grassmann algebras
von: Koshlukov, Plamen, et al.
Veröffentlicht: (2018) -
Free vibrations of pentagonal plates with a hole
von: O. Y. Hryhorenko, et al.
Veröffentlicht: (2023)