Comments on the Dynamics of the Pais-Uhlenbeck Oscillator

We discuss the quantum dynamics of the PU oscillator, i.e. the system with the Lagrangian L = ½ [ ¨q² - (Ω₁² + Ω₂²) ·q² + Ω₁²Ω₂²q ] (+ nonlinear terms). When Ω₁ ≠ Ω₂, the free PU oscillator has a pure point spectrum that is dense everywhere. When Ω₁ = Ω₂, the spectrum is continuous, E ∊ {–∞, ∞...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2009
1. Verfasser: Smilga, A.V.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2009
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/149243
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Comments on the Dynamics of the Pais-Uhlenbeck Oscillator / A.V. Smilga // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 14 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We discuss the quantum dynamics of the PU oscillator, i.e. the system with the Lagrangian L = ½ [ ¨q² - (Ω₁² + Ω₂²) ·q² + Ω₁²Ω₂²q ] (+ nonlinear terms). When Ω₁ ≠ Ω₂, the free PU oscillator has a pure point spectrum that is dense everywhere. When Ω₁ = Ω₂, the spectrum is continuous, E ∊ {–∞, ∞}. The spectrum is not bounded from below, but that is not disastrous as the Hamiltonian is Hermitian and the evolution operator is unitary. Generically, the inclusion of interaction terms breaks unitarity, but in some special cases unitarity is preserved. We discuss also the nonstandard realization of the PU oscillator suggested by Bender and Mannheim, where the spectrum of the free Hamiltonian is positive definite, but wave functions grow exponentially for large real values of canonical coordinates. The free nonstandard PU oscillator is unitary at Ω₁ ≠ Ω₂, but unitarity is broken in the equal frequencies limit.