Bäcklund Transformations for First and Second Painlevé Hierarchies
We give Bäcklund transformations for first and second Painlevé hierarchies. These Bäcklund transformations are generalization of known Bäcklund transformations of the first and second Painlevé equations and they relate the considered hierarchies to new hierarchies of Painlevé-type equations.
Gespeichert in:
Datum: | 2009 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2009
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/149252 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Bäcklund Transformations for First and Second Painlevé Hierarchies / A.H. Sakka // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 23 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149252 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1492522019-02-20T01:26:55Z Bäcklund Transformations for First and Second Painlevé Hierarchies Sakka, A.H. We give Bäcklund transformations for first and second Painlevé hierarchies. These Bäcklund transformations are generalization of known Bäcklund transformations of the first and second Painlevé equations and they relate the considered hierarchies to new hierarchies of Painlevé-type equations. 2009 Article Bäcklund Transformations for First and Second Painlevé Hierarchies / A.H. Sakka // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 23 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 34M55; 33E17 http://dspace.nbuv.gov.ua/handle/123456789/149252 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We give Bäcklund transformations for first and second Painlevé hierarchies. These Bäcklund transformations are generalization of known Bäcklund transformations of the first and second Painlevé equations and they relate the considered hierarchies to new hierarchies of Painlevé-type equations. |
format |
Article |
author |
Sakka, A.H. |
spellingShingle |
Sakka, A.H. Bäcklund Transformations for First and Second Painlevé Hierarchies Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Sakka, A.H. |
author_sort |
Sakka, A.H. |
title |
Bäcklund Transformations for First and Second Painlevé Hierarchies |
title_short |
Bäcklund Transformations for First and Second Painlevé Hierarchies |
title_full |
Bäcklund Transformations for First and Second Painlevé Hierarchies |
title_fullStr |
Bäcklund Transformations for First and Second Painlevé Hierarchies |
title_full_unstemmed |
Bäcklund Transformations for First and Second Painlevé Hierarchies |
title_sort |
bäcklund transformations for first and second painlevé hierarchies |
publisher |
Інститут математики НАН України |
publishDate |
2009 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149252 |
citation_txt |
Bäcklund Transformations for First and Second Painlevé Hierarchies / A.H. Sakka // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 23 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT sakkaah backlundtransformationsforfirstandsecondpainlevehierarchies |
first_indexed |
2025-07-12T21:41:47Z |
last_indexed |
2025-07-12T21:41:47Z |
_version_ |
1837478985681862656 |
fulltext |
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 5 (2009), 024, 11 pages
Bäcklund Transformations
for First and Second Painlevé Hierarchies
Ayman Hashem SAKKA
Department of Mathematics, Islamic University of Gaza, P.O. Box 108, Rimal, Gaza, Palestine
E-mail: asakka@iugaza.edu.ps
Received November 25, 2008, in final form February 24, 2009; Published online March 02, 2009
doi:10.3842/SIGMA.2009.024
Abstract. We give Bäcklund transformations for first and second Painlevé hierarchies.
These Bäcklund transformations are generalization of known Bäcklund transformations of
the first and second Painlevé equations and they relate the considered hierarchies to new
hierarchies of Painlevé-type equations.
Key words: Painlevé hierarchies; Bäcklund transformations
2000 Mathematics Subject Classification: 34M55; 33E17
1 Introduction
One century ago Painlevé and Gambier have discovered the six Painlevé equations, PI–PVI.
These equations are the only second-order ordinary differential equations whose general solutions
can not be expressed in terms of elementary and classical special functions; thus they define new
transcendental functions. Painlevé transcendental functions appear in many areas of modern
mathematics and physics and they paly the same role in nonlinear problems as the classical
special functions play in linear problems.
In recent years there is a considerable interest in studying hierarchies of Painlevé equations.
This interest is due to the connection between these hierarchies of Painlevé equations and com-
pletely integrable partial differential equations. A Painlevé hierarchy is an infinite sequence of
nonlinear ordinary differential equations whose first member is a Painlevé equation. Airault [1]
was the first to derive a Painlevé hierarchy, namely a second Painlevé hierarchy, as the similari-
ty reduction of the modified Korteweg–de Vries (mKdV) hierarchy. A first Painlevé hierarchy
was given by Kudryashov [2]. Later on several hierarchies of Painlevé equations were introdu-
ced [3, 4, 5, 6, 7, 8, 9, 10, 11].
As it is well known, Painlevé equations possess Bäcklund transformations; that is, mappings
between solutions of the same Painlevé equation or between solutions of a particular Painlevé
equation and other second-order Painlevé-type equations. Various methods to derive these
Bäcklund transformations can be found for example in [12, 13, 14, 15]. Bäcklund transformations
are nowadays considered to be one of the main properties of integrable nonlinear ordinary
differential equations, and there is much interest in their derivation.
In the present article, we generalize known Bäcklund transformations of the first and se-
cond Painlevé equations to the first and second Painlevé hierarchies given in [6, 11]. We give
a Bäcklund transformation between the considered first Painlevé hierarchy and a new hierarchy
of Painlevé-type equations. In addition, we give two new hierarchies of Painlevé-type equations
related, via Bäcklund transformations, to the considered second Painlevé hierarchy. Then we
derive auto-Bäcklund transformations for this second Painlevé hierarchy. Bäcklund transforma-
tions of the second Painlevé hierarchy have been studied in [6, 16].
mailto:asakka@iugaza.edu.ps
http://dx.doi.org/10.3842/SIGMA.2009.024
2 A.H. Sakka
2 Bäcklund transformations for PI hierarchy
In this section, we will derive a Bäcklund transformation for the first Painlevé hierarchy (PI
hierarchy) [6]
n+1∑
j=2
γjL
j [u] = γx, (2.1)
where the operator Lj [u] satisfies the Lenard recursion relation
DxLj+1[u] =
(
D3
x − 4uDx − 2ux
)
Lj [u], L1[u] = u. (2.2)
The special case γj = 0, 2 ≤ j ≤ n, of this hierarchy is a similarity reduction of the Schwarz–
Korteweg–de Vries hierarchy [2, 4]. Moreover its members may define new transcendental func-
tions.
The PI hierarchy (2.1) can be written in the following form [11]
Rn
I
u +
n∑
j=2
κjRn−j
I
u = x, (2.3)
where RI is the recursion operator
RI = D2
x − 8u + 4D−1
x ux.
In [17, 18], it is shown that the Bäcklund transformation
u = −yx, y = 1
2
(
u2
x − 4u3 − 2xu
)
, (2.4)
defines a one-to-one correspondence between the first Painlevé equation
uxx = 6u2 + x. (2.5)
and the SD-I.e equation of Cosgrove and Scoufis [17]
y2
xx = −4y3
x − 2(xyx − y). (2.6)
We will show that there is a generalization of this Bäcklund transformation to all members
of the PI hierarchy (2.3). Let
y = −xu + D−1
x ux
[
Rn
I
u +
n∑
j=2
κjRn−j
I
u
]
. (2.7)
Differentiating (2.7) and using (2.3), we find
u = −yx. (2.8)
Substituting u = −yx into (2.7), we obtain the following hierarchy of differential equation for y
D−1
x yxx
[
Sn
I
yx +
n∑
j=2
κjSn−j
I
yx
]
+ (xyx − y) = 0, (2.9)
where SI is the recursion operator
SI = D2
x + 8yx − 4D−1
x yxx.
Bäcklund Transformations for First and Second Painlevé Hierarchies 3
The first member of the hierarchy (2.9) is the SD-I.e equation (2.6). Thus we shall call this
hierarchy SD-I.e hierarchy.
Therefor we have derived the Bäcklund transformation (2.7)–(2.8) between solutions u of the
first Painlevé hierarchy (2.3) and solutions y of the SD-I.e hierarchy (2.9).
When n = 1, the Bäcklund transformation (2.7)–(2.8) gives the Bäcklund transformation (2.4)
between the first Painlevé equation (2.5) and the SD-I.e equation (2.6). Next we will consider
the cases n = 2 and n = 3.
Example 1 (n = 2). The second member of the PI hierarchy (2.3) is the fourth-order equation
uxxxx = 20uuxx + 10u2
x − 40u3 − κ2u + x. (2.10)
In this case, the Bäcklund transformation (2.7) reads
y = 1
2
(
2uxuxxx − u2
xx − 20uu2
x + 20u4 + κ2u
2 − 2xu
)
. (2.11)
Equations (2.11) and (2.8) give one-to-one correspondence between (2.10) and the following
equation
2yxxyxxxx − y2
xxx + 20yxy2
xx + 20y4
x + κ2y
2
x + 2(xyx − y) = 0. (2.12)
Equation (2.12) and the Bäcklund transformation (2.8) and (2.11) were given before [19].
Example 2 (n = 3). The third member of the PI hierarchy (2.3) reads
uxxxxxx = 28uuxxxx + 56uxuxxx + 42u2
xx − 280u2uxx
− 280uu2
x + 280u4 − κ2
(
uxx − 6u2
)
− κ3u + x. (2.13)
In this case, the Bäcklund transformation (2.7) has the form
y = 1
2
[
2uxuxxxxx − 2uxxuxxxx + u2
xxx − 56uuxuxxx + 28uu2
xx
− 56u2
xuxx + 280u2u2
x − 112u5 + κ2
(
u2
x − 4u3
)
+ κ3u
2 − 2xu
]
. (2.14)
Equations (2.8) and (2.14) give one-to-one correspondence between solutions u of (2.13) and
solutions y of the following equation
2yxxyxxxxxx − 2yxxxyxxxxx + y2
xxxx + 56yxyxxyxxxx − 28yxy2
xxx
+ 56y2
xxyxxx + 280y2
xy2
xxx + 112y5
x + κ2
(
y2
xx + 4y3
x
)
+ κ3y
2
x + 2(xyx − y) = 0. (2.15)
Equation (2.15) is a new sixth-order Painlevé-type equation.
3 Bäcklund transformations for second Painlevé hierarchy
In the present section, we will study Bäcklund transformations of the second Painlevé hierarchy
(PII hierarchy) [6]
(Dx − 2u)
n∑
j=1
γjL
j
[
ux + u2
]
+ 2γxu− γ − 4δ = 0,
where the operator Lj [u] is defined by (2.2). The special case γj = 0, 1 ≤ j ≤ n − 1, of
this hierarchy is a similarity reduction of the modified Korteweg–de Vries hierarchy [2, 4]. The
members of this hierarchy may define new transcendental functions.
This hierarchy can be written in the following alternative form [11]
Rn
II
u +
n−1∑
j=1
κjRj
II
u− (xu + α) = 0, (3.1)
where RII is the recursion operator
RII = D2
x − 4u2 + 4uD−1
x ux.
4 A.H. Sakka
3.1 A hierarchy of SD-I.d equation
As a first Bäcklund transformation for the PII hierarchy (3.1), we will generalize the Bäcklund
transformation between the second Painlevé equation and the SD-I.d equation of Cosgrove and
Scoufis [17, 18].
Let
y = D−1
x
[
ux
(
Rn
II
u +
n−1∑
j=1
κjRj
II
u
)]
− 1
2xu2 − 1
2(2α− ε)u, (3.2)
where ε = ±1. Differentiating (3.2) and using (3.1), we find
ux = ε
(
u2 + 2yx
)
. (3.3)
Now we will show that
D−1
x
(
uxRj
II
u
)
= 1
2
(
u2Hj [yx] + D−1
x yxHj
x[yx]
)
, (3.4)
where the operator Hj [p] satisfies the Lenard recursion relation
DxHj+1[p] =
(
D3
x + 8pDx + 4px
)
Hj [p], H1[p] = 4p. (3.5)
Firstly, we will use induction to show that for any j = 1, 2, . . . ,
Rj
II
u = 1
2(εDx + 2u)Hj [yx]. (3.6)
For j = 1, RIIu = uxx − 2u3. Using (3.3), we find that
uxx = 2u3 + 4yxu + 2εyxx. (3.7)
Thus
RIIu = 4uyx + 2εyxx = 1
2(εDx + 2u)H1[yx].
Assume that it is true for j = k. Then
2Rk+1
II
u = RII(εDx + 2u)Hk[yx] = εHk
xxx[yx] + 2uHk
xx[yx] + 4uxHk
x [yx] + 2uxxHk[yx]
− 4u2
(
εHk
x [yx] + 2uHk[yx]
)
+ 4uD−1
x
(
εuxHk
x [yx] + 2uuxHk[yx]
)
. (3.8)
Integration by parts gives
D−1
x
(
εuxHk
x [yx] + 2uuxHk[yx]
)
= u2Hk[yx] + D−1
x
[(
εux − u2
)
Hk
x [yx]
]
.
Hence (3.8) can be written as
2Rk+1
II
u = εHk
xxx[yx] + 2uHk
xx[yx] + 4uxHk
x [yx] + 2uxxHk[yx]− 4u2
(
εHk
x [yx] + 2uHk[yx]
)
+ 4u
(
u2Hk[yx] + D−1
x
[(
εux − u2
)
Hk
x [yx]
])
. (3.9)
Using (3.3) to substitute ux and (3.7) to substitute uxx, (3.9) becomes
2Rk+1
II
u = ε
(
Hk
xxx[yx] + 8yxHk
x [yx] + 4yxxHk[yx]
)
+ 2u
(
Hk
xx[yx] + 4yxHk[yx] + 4D−1
x yxHk
x [yx]
)
= (εDx + 2u)
(
Hk
xx[yx] + 4yxHk[yx] + 4D−1
x yxHk
x [yx]
)
.
Bäcklund Transformations for First and Second Painlevé Hierarchies 5
Since
Dx
(
Hk
xx[yx] + 4yxHk[yx] + 4D−1
x yxHk
x [yx]
)
= Hk
xxx[yx] + 8yxHk
x [yx] + 4yxxHk[yx],
we have Hk
xx[yx] + 4yxHk[yx] + 4D−1
x yxHk
x [yx] = Hk+1[yx], see (3.5), and hence the proof by
induction is finished.
Now using (3.6) we find
2uxRk
II
(u) =
(
εux − u2
)
Hk
x [yx] + Dx
(
u2Hk[yx]
)
. (3.10)
Using (3.3) to substitute ux into (3.10) and then integrating, we obtain (3.4).
Therefore (3.2) can be used to obtain the following quadratic equation for u(
− x + Hn[yx] +
n−1∑
j=1
κjH
j [yx]
)
u2 − (2α− ε)u
+ 2D−1
x yx
(
Hn
x [yx] +
n−1∑
j=1
κjH
j
x[yx]
)
− 2y = 0. (3.11)
Eliminating u between (3.3) and (3.11) gives a one-to-one correspondence between the second
Painlevé hierarchy (3.1) and the following hierarchy of second-degree equations(
Hn
x [yx] +
n−1∑
j=1
κjH
j
x[yx]− 1
)2
+ 8
(
Hn[yx] +
n−1∑
j=1
κjH
j [yx]− x
)
×
(
D−1
x yxHn
x [yx] +
n−1∑
j=1
κjD
−1
x yxHj
x[yx]− y
)
= (2α− ε)2. (3.12)
Therefore we have derived the Bäcklund transformation (3.2) and (3.11) between the PII
hierarchy (3.1) and the new hierarchy (3.12).
Next we will give the explicit forms of the above results when n = 1, 2, 3.
Example 3 (n = 1). The first member of the second Painlevé hierarchy (3.1) is the second
Painlevé equation
uxx = 2u3 + xu + α.
In this case, (3.2) and (3.11) read
y = 1
2
[
u2
x − u4 − xu2 − (2α− ε)u
]
and
(4yx − x)u2 − (2α− ε)u + 4y2
x − 2y = 0,
respectively. The second-degree equation for y is
(4yxx − 1)2 + 8(4yx − x)
(
2y2
x − y
)
= (2α− ε)2. (3.13)
The change of variables w = y− 1
8x2 transforms (3.13) into the SD-I.d equation of Cosgrove and
Scoufis [17]
w2
xx + 4w3
x + 2wx(xwx − w) = 1
16(2α− ε)2.
Thus when n = 1, the Bäcklund transformation (3.2) and (3.11) is the known Bäcklund
transformation between the second Painlevé equation and the SD-I.d equation (3.12). Since the
first member of the hierarchy (3.12) is the SD-I.d equation, we shall call it SD-I.d hierarchy.
6 A.H. Sakka
Example 4 (n = 2). The second member of the second Painlevé hierarchy (3.1) reads
uxxxx = 10u2uxx + 10uu2
x − 6u5 − κ1
(
uxx − 2u3
)
+ xu + α. (3.14)
Equation (3.14) is labelled in [20, 21] as F-XVII.
In this case, (3.2) and (3.11) read
y = 1
2
[
2uxuxxx − u2
xx − 10u2u2
x + 2u6 + κ1
(
u2
x − u4
)
− xu2 − (2α− ε)u
]
(3.15)
and (
4yxxx+ 24y2
x+ 4κ1yx − x
)
u2− (2α− ε)u + 8yxyxxx− 4y2
xx+ 32y3
x+ 4κ1y
2
x− 2y = 0, (3.16)
respectively. Equations (3.15) and (3.16) give one-to-one correspondence between (3.14) and
the following fourth-order second-degree equation
[4yxxxx + 48yxyxx + 4κ1yxx − 1]2 (3.17)
+ 8
[
4yxxx + 24y2
x + 4κ1yx − x
][
4yxyxxx − 2y2
xx + 16y3
x + 2κ1y
2
x − y
]
= (2α− ε)2.
Equation (3.17) is a first integral of the following fifth-order equation
yxxxxx = −20yxyxxx − 10y2
xx − 40y3
x − κ1yxxx − 6κ1y
2
x + xyx + y. (3.18)
The transformation y = −(w + 1
2γz + 5γ3), z = x + 30γ2 transforms (3.18) into the equation
wzzzzz = 20wzwzzz + 10w2
zz − 40w3
z + zwz + w + γz. (3.19)
The Bäcklund transformation [22]
v = wz, w = vzzzz − 20vvzz − 10v2
z + 40v3 − zv − γz, (3.20)
gives a one-to-one correspondence between (3.19) and Cosgrove’s Fif-III equation [20]
vzzzzz = 20vvzzz + 40vzvzz − 120v2vz + zvz + 2v + γ. (3.21)
Therefore we have rederived the known relation
v = −1
2
(
εux − u2 + γ
)
, u =
−ε[vzzz − 12vvz + 4γvz + ε
2α]
2[vzz − 6v2 + 4γv + 1
4z − 4γ2]
.
between Cosgrove’s equations Fif-III (3.21) and F-XVII (3.14) [20].
Example 5 (n = 3). The third member of the second Painlevé hierarchy (3.1) reads
uxxxxxx = 14u2uxxxx + 56uuxuxxx + 42uu2
xx + 70u2
xuxx − 70u4uxx − 140u3u2
x + 20u7
− κ2(uxxxx − 10u2uxx − 10uu2
x + 6u5)− κ1(uxx − 2u3) + xu + α. (3.22)
In this case, (3.2) and (3.11) have the following forms respectively
2y = 2uxuxxxxx − 2uxxuxxxx + u2
xxx − 28u2uxuxxx + 14u2u2
xx− 56uu2
xuxx − 21u4
x+ 70u4u2
x
− 5u8 + κ2(2uxuxxx − u2
xx − 10u2u2
x + 2u6) + κ1(u2
x − u4)− xu2 − (2α− ε)u (3.23)
and
4
[
yxxxxx + 20yxyxx + 10y2
xx + 40y3
x + κ2
(
yxxx + 6y2
x
)
+ κ1yx − 1
4x
]
u2
Bäcklund Transformations for First and Second Painlevé Hierarchies 7
− (2α− ε)u + 4
(
2yxyxxxxx − 2yxxyxxxx + y2
xxx + 40y2
xyxxx + 60y4
x
)
+ 4κ2
(
2yxyxxx − y2
xx + 8y3
x
)
+ 4κ1y
2
x − 2y = 0. (3.24)
Equations (3.23) and (3.24) give one-to-one correspondence between (3.22) and the following
six-order second-degree equation[
yxxxxxx + 20yxyxxxx + 40yxxyxxx + 120y2
xyxx + κ2(yxxxx + 12yxyxx) + κ1yxx − 1
4
]2
+ 2
[
yxxxxx + 20yxyxx + 10y2
xx + 40y3
x + κ2
(
yxxx + 6y2
x
)
+ κ1yx − 1
4x
]
×
[
4yxyxxxxx − 4yxxyxxxx + 2y2
xxx + 80y2
xyxxx + 120y4
x
+ 2κ2
(
2yxyxxx − y2
xx + 8y3
x
)
+ 2κ1y
2
x − y
]
= 1
16(2α− ε)2. (3.25)
The Bäcklund transformation (3.23), (3.24) and the equation (3.25) are not given before.
3.2 A hierarchy of a second-order fourth-degree equation
In this subsection, we will generalize the Bäcklund transformation given in [23] between the
second Painlevé equation and a second-order fourth-degree equation.
Let
y = D−1
x
[
ux
(
Rn
II
u +
n−1∑
j=1
κjRj
II
u
)]
− 1
2xu2 − αu. (3.26)
Differentiating (3.26) and using (3.1), we find
u2 + 2yx = 0. (3.27)
Equations (3.26) and (3.27) define a Bäcklund transformation between the second Painlevé
hierarchy (3.1) and a new hierarchy of differential equations for y.
In order to obtain the new hierarchy, we will prove that
D−1
x
(
uxRj
II
u
)
= −D−1
x
(
yxx
yx
Sj
II
yx
)
, (3.28)
where SII is the recursion operator
SII = D2
x −
yxx
yx
Dx −
yxxx
2yx
+
3y2
xx
4y2
x
+ 8yx − 4yxD−1
x
yxx
yx
.
First of all, we will use induction to prove that
Rj
II
u = −2
u
Sj
II
yx. (3.29)
Using (3.27), we find
ux = −yxx
u
, uxx = −1
u
(
yxxx −
y2
xx
2yx
)
. (3.30)
Hence
RIIu = uxx − 2u3 = −1
u
(
yxxx −
y2
xx
2yx
+ 8y2
x
)
= −2
u
SIIyx.
Thus (3.29) is true for j = 1.
8 A.H. Sakka
Assume it is true for j = k. Then
Rk+1
II
u = −2RII
1
u
Sk
II
yx = −2
u
{
D2
x −
2ux
u
Dx −
uxx
u
+
2u2
x
u2
− 4u2 + 4u2D−1
x
ux
u
}
Sk
II
yx.
Using (3.30) to substitute ux and uxx and using (3.27) to substitute u2, we find the result.
As a second step, we use (3.29) to find
D−1
x
(
uxRk
II
u
)
= −2D−1
x
(ux
u
Sk
II
yx
)
.
Thus using (3.30) to substitute ux and using (3.27) to substitute u2 we find (3.28).
Therefore (3.26) implies
αu = −y + xyx −D−1
x
[
yxx
yx
(
Sn
II
yx +
n−1∑
j=1
κjSj
II
yx
)]
. (3.31)
If α 6= 0, then substituting u from (3.31) into (3.27) we obtain the following hierarchy of
differential equations for y(
D−1
x
[
yxx
yx
(
Sn
II
yx +
n−1∑
j=1
κjSj
II
yx
)]
− xyx + y
)2
+ 2α2yx = 0. (3.32)
If α = 0, then y satisfies the hierarchy
D−1
x
[
yxx
yx
(
Sn
II
yx +
n−1∑
j=1
κjSj
II
yx
)]
− xyx + y = 0.
The first member of the hierarchy (3.32) is a fourth-degree equation, whereas the other
members are second-degree equations. Now we give some examples.
Example 6 (n = 1). In the present case, (3.26) reads
2y = u2
x − u4 − xu2 − 2αu. (3.33)
Eliminating u between (3.27) and (3.33) yields the following second-order fourth-degree equation
for y [
y2
xx + 8y3
x − 4yx(xyx − y)
]2 + 32α2y3
x = 0. (3.34)
The change of variables w = 2y transform (3.34) into the following equation[
w2
xx + 4w3
x − 4wx(xwx − w)
]2 + 16α2y3
x = 0. (3.35)
Equation (3.35) was derived before [23].
Example 7 (n = 2). When n = 2, (3.26) reads
2y = 2uxuxxx − u2
xx − 10u2u2
x + 2u6 − xu2 − 2αu + κ1
(
u2
x − u4
)
. (3.36)
Equations (3.27) and (3.36) give a Bäcklund transformation between the second member of PII
hierarchy (3.14) and the following fourth-order second-degree equation for y[
yxxyxxxx −
3y2
xx
2yx
(
yxxx −
y2
xx
2yx
)
− 1
2
(
yxxx −
y2
xx
2yx
)2
+ 10yxy2
xx + 16y4
x − 2yx(xyx − y) +
1
2
κ1
(
y2
xx + 8y3
x
)]2
+ 8α2y3
x = 0. (3.37)
Equation (3.37) was given before [19].
Bäcklund Transformations for First and Second Painlevé Hierarchies 9
Example 8 (n = 3). In this case, (3.26) read
2y = 2uxuxxxxx − 2uxxuxxxx + u2
xxx − 28u2uxuxxx + 14u2u2
xx − 56uu2
xuxx − 21u4
x (3.38)
+ 70u4u2
x − 5u8 + κ2
(
2uxuxxx − u2
xx − 10u2u2
x + 2u6
)
+ κ1
(
u2
x − u4
)
− xu2 − 2αu,
and (3.32) has the form[
2yxxyxxxxxx −
(
2yxxx +
3y2
xx
yx
)(
yxxxxx +
5yxxyxxxx
yx
)
+
(
yxxxx −
3yxxyxxx
2yx
+
3y3
xx
4y2
x
)2
+
(
2yxxx −
y2
xx
yx
)(
2yxxyxxxx
yx
+
3y2
xxx
2yx
− 9y2
xxyxxx
2y2
x
+
15y2
xx
8y3
x
− 7y2
xx − 14yxyxxx
)
+
15y2
xx
2y2
x
(
3y2
xxx −
5y2
xxyxxx
yx
+
7y4
xx
4y3
x
)
+
21y4
xx
2yx
+ 280y2
xy2
xx − 150y5
x − 4yx(xyx − y)
+ 2κ2
[
yxxyxxxx −
3y2
xx
2yx
(
yxxx −
y2
xx
2yx
)
− 1
2
(
yxxx −
y2
xx
2yx
)2
+ 10yxy2
xx + 16y4
x
]
+ κ1
(
y2
xx + 8y3
x
)]2
+ 32α2y3
x = 0. (3.39)
The Bäcklund transformation between the third member of PII hierarchy (3.22) and the new
equation (3.39) is given by (3.27) and (3.38).
3.3 Auto-Bäcklund transformations for PII hierarchy
In this subsection, we will use the SD-I.d hierarchy (3.12) to derive auto-Bäcklund transforma-
tions for PII hierarchy (3.1).
Let u be solution of (3.1) with parameter α and let ū be solution of (3.1) with parameter ᾱ.
Since (3.12) is invariant under the transformation 2α − ε = −2ᾱ + ε, a solution y of (3.12)
corresponds to two solutions u and ū of (3.1). The relation between y and u is given by (3.11)
and the relation between y and ū is given by(
− x + Hn[yx] +
n−1∑
j=1
κjH
j [yx]
)
ū2 − (2ᾱ− ε)ū
+ 2D−1
x yx
(
Hn
x [yx] +
n−1∑
j=1
κjH
j
x[yx]
)
− 2y = 0. (3.40)
Subtracting (3.11) from (3.40), we obtain(
− x + Hn[yx] +
n−1∑
j=1
κjH
j [yx]
)(
ū2 − u2
)
− (2ᾱ− ε)ū + (2α− ε)u = 0. (3.41)
Using 2α− ε = −2ᾱ + ε and dividing by ū + u, (3.41) yields(
− x + Hn[yx] +
n−1∑
j=1
κjH
j [yx]
)
(ū− u) + (2α− ε) = 0.
Now using (3.3) to substitute yx, we obtain the following two auto-Bäcklund transformations
for PII hierarchy (3.1)
ᾱ = −α + ε, ε = ±1,
10 A.H. Sakka
ū = u− (2α− ε)(
− x + Hn[12(εux − u2)] +
n−1∑
j=1
κjHj [12(εux − u2)]
) . (3.42)
These auto-Bäcklund transformations and the discrete symmetry ū = −u, ᾱ = −α can be used
to derive the auto-Bäcklund transformations given in [6, 16].
The auto-Bäcklund transformations (3.42) can be used to obtain infinite hierarchies of solu-
tions of the PII hierarchy (3.1). For example, starting by the solution u = 0, α = 0 of (3.1), the
auto-Bäcklund transformations (3.42) yields the new solution ū = − ε
x , ᾱ = ε. Now applying the
auto-Bäcklund transformations (3.42) with ε = 1 to the solution ū = 1
x , ᾱ = −1, we obtain the
new solution ¯̄u = −2(x3−2κ1)
x(x3+4κ1)
, ¯̄α = 2.
References
[1] Airault H., Rational solutions of Painlevé equations, Stud. Appl. Math. 61 (1979), 31–53.
[2] Kudryashov N.A., The first and second Painlevé equations of higher order and some relations between them,
Phys. Lett. A 224 (1997), 353–360.
[3] Hone A.N.W., Non-autonomous Hénon–Heiles systems, Phys. D 118 (1998), 1–16, solv-int/9703005.
[4] Kudryashov N.A., Soukharev M.B., Uniformization and transcendence of solutions for the first and second
Painlevé hierarchies, Phys. Lett. A 237 (1998), 206–216.
[5] Kudryashov N.A., Fourth-order analogies of the Painlevé equations, J. Phys. A: Math. Gen. 35 (2002),
4617–4632.
[6] Kudryashov N.A., Amalgamations of the Painlevé equations, J. Math. Phys. 44 (2003), 6160–6178.
[7] Muğan U., Jrad F., Painlevé test and the first Painlevé hierarchy, J. Phys. A: Math. Gen. 32 (1999),
7933–7952.
[8] Muğan U., Jrad F., Painlevé test and higher order differntial equations, J. Nonlinear Math. Phys. 9 (2002),
282–310, nlin.SI/0301043.
[9] Gordoa P.R., Pickering A., Nonisospectral scattering problems: a key to integrable hierarchies, J. Math.
Phys. 40 (1999), 5749–5786.
[10] Gordoa P.R., Joshi N., Pickering A., On a generalized 2+1 dispersive water wave hierarchy, Publ. Res. Inst.
Math. Sci. 37 (2001), 327–347.
[11] Sakka A., Linear problems and hierarchies of Painlevé equations, J. Phys. A: Math. Theor. 42 (2009),
025210, 19 pages.
[12] Fokas A.S., Ablowitz M.J., On a unified approach to transformations and elementary solutions of Painlevé
equations, J. Math. Phys. 23 (1982), 2033–2042.
[13] Okamoto K., Studies on the Painlevé equations. III. Second and fourth Painlevé equations, PII and PIV,
Math. Ann. 275 (1986), 221–255.
[14] Gordoa P. R., Joshi N., Pickering A., Mappings preserving locations of movable poles: a new extension of the
truncation method to ordinary differential equations, Nonlinearity 12 (1999), 955–968, solv-int/9904023.
[15] Gromak V., Laine I., Shimomura S., Painlevé differential equations in the complex plane, de Gruyter Studies
in Mathematics, Vol. 28, Walter de Gruyter & Co., Berlin, 2002.
[16] Clarkson P.A., Joshi N., Pickering A., Bäcklund transformations for the second Pianlevé hierarchy: a modi-
fied truncation approach, Inverse Problems 15 (1999), 175–187, solv-int/9811014.
[17] Cosgrove C.M., Scoufis G., Painlevé classification of a class of differential equations of the second order and
second degree, Stud. Appl. Math. 88 (1993), 25–87.
[18] Muğan U., Sakka A., Second-order second-degree Painlevé equations related with Painlevé I–VI equations
and Fuchsian-type transformations, J. Math. Phys. 40 (1999), 3569–3587.
[19] Sakka A., Elshamy S., Bäcklund transformations for fourth-order Painlevé-type equations, The Islamic
University Journal, Natural Science Series 14 (2006), 105–120.
http://arxiv.org/abs/solv-int/9703005
http://arxiv.org/abs/nlin.SI/0301043
http://arxiv.org/abs/solv-int/9904023
http://arxiv.org/abs/solv-int/9811014
Bäcklund Transformations for First and Second Painlevé Hierarchies 11
[20] Cosgrove C. M., Higher-order Painlevé equations in the polynomial class. I. Bureau symbol P2, Stud. Appl.
Math. 104 (2000), 1–65.
[21] Cosgrove C.M., Higher-order Painlevé equations in the polynomial class. II. Bureau symbol P1, Stud. Appl.
Math. 116 (2006), 321–413.
[22] Sakka A., Bäcklund transformations for fifth-order Painlevé equations, Z. Naturforsch. A 60 (2005), 681–
686.
[23] Sakka A., Second-order fourth-degree Painlevé-type equations, J. Phys. A: Math. Gen. 34 (2001), 623–631.
1 Introduction
2 Bäcklund transformations for PI hierarchy
3 Bäcklund transformations for second Painlevé hierarchy
3.1 A hierarchy of SD-I.d equation
3.2 A hierarchy of a second-order fourth-degree equation
3.3 Auto-Bäcklund transformations for PII hierarchy
References
|