A Universal Genus-Two Curve from Siegel Modular Forms
Let p be any point in the moduli space of genus-two curves M2 and K its field of moduli. We provide a universal equation of a genus-two curve Cα,β defined over K(α,β), corresponding to p, where α and β satisfy a quadratic α²+bβ²=c such that b and c are given in terms of ratios of Siegel modular form...
Gespeichert in:
Datum: | 2017 |
---|---|
Hauptverfasser: | Malmendier, A., Shaska, T. |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2017
|
Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/149268 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | A Universal Genus-Two Curve from Siegel Modular Forms / A. Malmendier, T. Shaska // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 19 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Quantum codes from algebraic curves with automorphisms
von: Shaska, T.
Veröffentlicht: (2008) -
Balanced Metric and Berezin Quantization on the Siegel-Jacobi Ball
von: Berceanu, S.
Veröffentlicht: (2016) -
Regularized brownian motion on the Siegel disk of infinite dimension
von: Airault, H., et al.
Veröffentlicht: (2000) -
Big Bang, Blowup, and Modular Curves: Algebraic Geometry in Cosmology
von: Manin, Y.I., et al.
Veröffentlicht: (2014) -
A Journey Between Two Curves
von: Cherkis, S.A.
Veröffentlicht: (2007)