Boundary Interactions for the Semi-Infinite q-Boson System and Hyperoctahedral Hall-Littlewood Polynomials

We present a semi-infinite q-boson system endowed with a four-parameter boundary interaction. The n-particle Hamiltonian is diagonalized by generalized Hall-Littlewood polynomials with hyperoctahedral symmetry that arise as a degeneration of the Macdonald-Koornwinder polynomials and were recently st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2013
Hauptverfasser: van Diejen, J.F., Emsiz, E.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2013
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/149369
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Boundary Interactions for the Semi-Infinite q-Boson System and Hyperoctahedral Hall-Littlewood Polynomials / J.F. van Diejen, E. Emsiz // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 16 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149369
record_format dspace
spelling irk-123456789-1493692019-02-22T01:23:32Z Boundary Interactions for the Semi-Infinite q-Boson System and Hyperoctahedral Hall-Littlewood Polynomials van Diejen, J.F. Emsiz, E. We present a semi-infinite q-boson system endowed with a four-parameter boundary interaction. The n-particle Hamiltonian is diagonalized by generalized Hall-Littlewood polynomials with hyperoctahedral symmetry that arise as a degeneration of the Macdonald-Koornwinder polynomials and were recently studied in detail by Venkateswaran. 2013 Article Boundary Interactions for the Semi-Infinite q-Boson System and Hyperoctahedral Hall-Littlewood Polynomials / J.F. van Diejen, E. Emsiz // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 16 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 33D52; 81T25; 81R50; 82B23 DOI: http://dx.doi.org/10.3842/SIGMA.2013.077 http://dspace.nbuv.gov.ua/handle/123456789/149369 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We present a semi-infinite q-boson system endowed with a four-parameter boundary interaction. The n-particle Hamiltonian is diagonalized by generalized Hall-Littlewood polynomials with hyperoctahedral symmetry that arise as a degeneration of the Macdonald-Koornwinder polynomials and were recently studied in detail by Venkateswaran.
format Article
author van Diejen, J.F.
Emsiz, E.
spellingShingle van Diejen, J.F.
Emsiz, E.
Boundary Interactions for the Semi-Infinite q-Boson System and Hyperoctahedral Hall-Littlewood Polynomials
Symmetry, Integrability and Geometry: Methods and Applications
author_facet van Diejen, J.F.
Emsiz, E.
author_sort van Diejen, J.F.
title Boundary Interactions for the Semi-Infinite q-Boson System and Hyperoctahedral Hall-Littlewood Polynomials
title_short Boundary Interactions for the Semi-Infinite q-Boson System and Hyperoctahedral Hall-Littlewood Polynomials
title_full Boundary Interactions for the Semi-Infinite q-Boson System and Hyperoctahedral Hall-Littlewood Polynomials
title_fullStr Boundary Interactions for the Semi-Infinite q-Boson System and Hyperoctahedral Hall-Littlewood Polynomials
title_full_unstemmed Boundary Interactions for the Semi-Infinite q-Boson System and Hyperoctahedral Hall-Littlewood Polynomials
title_sort boundary interactions for the semi-infinite q-boson system and hyperoctahedral hall-littlewood polynomials
publisher Інститут математики НАН України
publishDate 2013
url http://dspace.nbuv.gov.ua/handle/123456789/149369
citation_txt Boundary Interactions for the Semi-Infinite q-Boson System and Hyperoctahedral Hall-Littlewood Polynomials / J.F. van Diejen, E. Emsiz // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 16 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT vandiejenjf boundaryinteractionsforthesemiinfiniteqbosonsystemandhyperoctahedralhalllittlewoodpolynomials
AT emsize boundaryinteractionsforthesemiinfiniteqbosonsystemandhyperoctahedralhalllittlewoodpolynomials
first_indexed 2025-07-12T21:58:00Z
last_indexed 2025-07-12T21:58:00Z
_version_ 1837480007199358976
fulltext Symmetry, Integrability and Geometry: Methods and Applications SIGMA 9 (2013), 077, 12 pages Boundary Interactions for the Semi-Infinite q-Boson System and Hyperoctahedral Hall–Littlewood Polynomials? Jan Felipe VAN DIEJEN and Erdal EMSIZ Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Casilla 306, Correo 22, Santiago, Chile E-mail: diejen@mat.puc.cl, eemsiz@mat.puc.cl Received September 27, 2013, in final form November 26, 2013; Published online December 04, 2013 http://dx.doi.org/10.3842/SIGMA.2013.077 Abstract. We present a semi-infinite q-boson system endowed with a four-parameter boun- dary interaction. The n-particle Hamiltonian is diagonalized by generalized Hall–Littlewood polynomials with hyperoctahedral symmetry that arise as a degeneration of the Macdonald– Koornwinder polynomials and were recently studied in detail by Venkateswaran. Key words: Hall–Littlewood functions; q-bosons; boundary fields; hyperoctahedral sym- metry 2010 Mathematics Subject Classification: 33D52; 81T25; 81R50; 82B23 1 Introduction The q-boson model introduced by Bogoliubov et al. [1] is a quantum many body system on the one-dimensional lattice built of particle creation and annihilation operators representing the q- oscillator algebra (cf., e.g., [11, Section 3.1] and [6, Chapter 5] and references therein for further background material concerning the q-oscillator algebra and its representations). The model in question can be seen as a limiting case of a more general quantum particle system arising as a q- deformation of the totally asymmetric simple exclusion process (q-TASEP) [2, 12, 13, 14]. The n- particle Bethe ansatz eigenfunctions of the q-boson model amount to Hall–Littlewood polynomi- als, both in the case of a finite periodic lattice (with finite discrete spectrum) [8, 15] and in that of an infinite lattice (with bounded absolutely continuous spectrum) [4]. For appropriate boundary fields acting on the particles at the end point of the semi-infinite lattice [5], the Bethe ansatz eigenfunctions result moreover to be given by Macdonald’s three-parameter Hall–Littlewood polynomials with hyperoctahedral symmetry associated with the root system BCn [9, § 10]. Recently it was pointed out that the BCn-type Hall–Littlewood polynomials of Macdonald can be viewed as a subfamily of a more general five-parameter family of hyperoctahedral Hall– Littlewood polynomials that was studied in detail by Venkateswaran [16]; this five-parameter family arises as a q → 0 degeneration – without parameter confluences – of the Macdonald– Koornwinder multivariate Askey–Wilson polynomials [7, 10]. The purpose of the present note is to show that the five-parameter hyperoctahedral Hall–Littlewood polynomials at issue constitute the eigenfunctions of a semi-infinite q-boson model endowed with boundary interactions that involve both the particles at the end point of the lattice and those at its nearest neighboring site. The underlying boundary deformation of the q-boson field algebra violates the principle of ultralocality: the particle creation and annihilation operators belonging to the end point and its nearest neighboring site no longer commute, and moreover, the n-particle eigenfunctions are only of the usual coordinate Bethe ansatz form away from the end point. ?This paper is a contribution to the Special Issue in honor of Anatol Kirillov and Tetsuji Miwa. The full collection is available at http://www.emis.de/journals/SIGMA/InfiniteAnalysis2013.html mailto:diejen@mat.puc.cl mailto:eemsiz@mat.puc.cl http://dx.doi.org/10.3842/SIGMA.2013.077 http://www.emis.de/journals/SIGMA/InfiniteAnalysis2013.html 2 J.F. van Diejen and E. Emsiz Remark 1. To avoid possible confusion, it is important to emphasize that the parameter q of the q-boson model does not correspond to the q-deformation parameter that enters in Mac- donald’s theory of orthogonal polynomials associated with root systems [9, 10] but rather to the parameter t used there. A different parameter t is employed below to abbreviate our nota- tion for a frequently appearing product comprised by the four Askey–Wilson-type parameters t1, . . . , t4 of the Macdonald–Koornwinder polynomial (and its (q → 0) Hall–Littlewood-type degeneration). 2 Hyperoctahedral Hall–Littlewood polynomials 2.1 Orthogonality Let W be the hyperoctahedral group formed by the semi-direct product of the symmetric group Sn and the n-fold product of the cyclic group Z2 ∼= {1,−1}. An element w = (σ, ε) ∈W acts naturally on ξ = (ξ1, . . . , ξn) ∈ Rn via wξ := (ε1ξσ1 , . . . , εnξσn) (with σ ∈ Sn and εj ∈ {1,−1} for j = 1, . . . , n). The algebra A of W -invariant polynomials on the torus Tn := Rn/(2πZn) is spanned by the hyperoctahedral monomial symmetric functions mλ(ξ) = ∑ µ∈Wλ ei〈µ,ξ〉, λ ∈ Λn, where Λn stands for the set of partitions λ = (λ1, . . . , λn) ∈ Zn with the convention λ1 ≥ · · · ≥ λn ≥ 0, and the summation is meant over the orbit of λ with respect to the action of W ; the bracket 〈·, ·〉 refers to the standard inner product on Rn, i.e. 〈µ, ξ〉 = µ1ξ1 + · · ·+ µnξn. The basis of hyperoctahedral Hall–Littlewood polynomials pλ(ξ), λ ∈ Λn studied in [16] arises from the monomial basis via a (partial) Gram–Schmidt-like process as the trigonometric polynomials of the form pλ(ξ) = mλ(ξ) + ∑ µ∈Λn with µ<λ cλ,µmµ(ξ), cλ,µ ∈ C, (1a) such that 〈pλ,mµ〉∆ = 0 if µ < λ (1b) (so 〈pλ,pµ〉∆ = 0 if µ < λ). Here we have employed the hyperoctahedral dominance partial ordering of the partitions ∀µ, λ ∈ Λn : µ ≤ λ iff ∑ 1≤j≤k µj ≤ ∑ 1≤j≤k λj for k = 1, . . . , n (2) (which differs from the usual dominance partial order in that one does not demand the additional degree homogeneity condition µ1 + · · ·+µn = λ1 + · · ·+λn for the partitions to be comparable) together with the following inner product on A: 〈f, g〉∆ := 1 (2π)n|W | ∫ Tn f(ξ)g(ξ)|∆(ξ)|2dξ, f, g ∈ A, (3a) with |W | = 2nn! denoting the order of the hyperoctahedral group and ∆(ξ) := ∏ 1≤j<k≤n ( 1− ei(ξj−ξk) )( 1− ei(ξj+ξk) )( 1− qei(ξj−ξk) )( 1− qei(ξj+ξk) ) ∏ 1≤j≤n 1− e2iξj 4∏ r=1 ( 1− treiξj ) . (3b) Semi-Infinite q-Boson System 3 Throughout it is assumed that the parameters belong to the domain q ∈ (0, 1) and tr ∈ (−1, 1) \ {0}, r = 1, . . . , 4. The hyperoctahedral Hall–Littlewood polynomials satisfy the following orthogonality rela- tions [16]: 〈pλ,pµ〉∆ = { 0 if λ 6= µ, Nλ if λ = µ, (4a) where Nλ := (1− q)n ( tqm0(λ)−1 ) m0(λ) (tq2m0(λ))m1(λ) ∏ 1≤r<s≤4 (trts)m0(λ) ∏ l≥0 (q)ml(λ) with t := t1t2t3t4. (4b) Here the multiplicity ml(λ) counts the number of parts λj , 1 ≤ j ≤ n of size λj = l (so m0(λ) is equal to n minus the number of nonzero parts) and we have used q-shifted factorials (x)m := (1− x)(1− xq) · · · ( 1− xqm−1 ) with the convention that (x)0 = 1. Notice that the orthogonality 〈pλ,pµ〉∆ = 0 for distinct partitions λ and µ is manifest from the defining properties in equations (1) when both weights are comparable in the hyperoctahedral dominance partial ordering (2), whereas for noncomparable partitions the orthogonality is not at all obvious from the above construction. 2.2 Explicit formula The orthogonality relations in equations (4) – which arise as a (q → 0) degeneration of well- known orthogonality relations for the Macdonald–Koornwinder multivariate Askey–Wilson poly- nomials [3, 7, 10] – form a two-parameter extension of Macdonald’s orthogonality relations for the Hall–Littlewood polynomials associated with the root system BCn [9, § 10]. An explicit for- mula for the hyperoctahedral Hall–Littlewood polynomials (1) generalizing the corresponding classic formula of Macdonald is given by [16] pλ(ξ) = 1 nλ ∑ w∈W Cλ(wξ)e−i〈λ,wξ〉, (5a) with Cλ(ξ) := ∏ 1≤j<k≤n ( 1− qei(ξj−ξk) )( 1− qei(ξj+ξk) )( 1− ei(ξj−ξk) )( 1− ei(ξj+ξk) ) ∏ 1≤j≤n λj>0 4∏ r=1 ( 1− treiξj ) 1− e2iξj (5b) and nλ := (1− q)−n(−1)m0(λ) ( tq2m0(λ) ) m1(λ) ∏ l≥0 (q)ml(λ). (5c) 4 J.F. van Diejen and E. Emsiz 2.3 Pieri-type recurrence relation The (q → 0) degeneration of a Pieri-type recurrence relation for the Macdonald–Koornwinder multivariate Askey–Wilson polynomials [3, Section 6] readily entails a corresponding recurrence relation for the normalized hyperoctahedral Hall–Littlewood polynomials Pλ(ξ) := cλpλ(ξ), (6a) where cλ := τλ11 · · · τλnn ( tq2m0(λ) ) m1(λ) ∏ l≥0 (q)ml(λ) (q)n ∏ 1<r≤4 (t1trqm0(λ))n−m0(λ) (6b) with τj := qn−jt1 for j = 1, . . . , n. Proposition 1 (Pieri formula). The normalized hyperoctahedral Hall–Littlewood polynomials Pλ(ξ), λ ∈ Λn satisfy the recurrence relation Pλ(ξ) n∑ j=1 ( 2 cos(ξj)− τj − τ−1 j ) = ∑ 1≤j≤n s.t. λ+ej∈Λn V + j (λ) ( Pλ+ej (ξ)− Pλ(ξ) ) + ∑ 1≤j≤n s.t. λ−ej∈Λn V −j (λ) ( Pλ−ej (ξ)− Pλ(ξ) ) , (7) with the vectors e1, . . . , en denoting the standard unit basis of Zn and V + j (λ) := τ−1 j [mλj (λ)] ( 1− tq2m0(λ)+m1(λ)−1 )δλj−1+δλj ×  ∏ 1<r≤4 ( 1− t1trqm0(λ)−1 ) ( 1− tq2m0(λ)−2 )( 1− tq2m0(λ)−1 )  δλj , V −j (λ) := τj [mλj (λ)] (1− tqm0(λ)−1) ∏ 1<r<s≤4 ( 1− trtsqm0(λ) ) ( 1− tq2m0(λ)−1 )( 1− tq2m0(λ) )  δλj−1 . Here we have employed the q-integers [m] := (1− qm)/(1− q) for m = 0, 1, 2, 3, . . . as well as the discrete delta function on Z: δl := 1 if l = 0 and δl := 0 otherwise (and the abbreviation ‘s.t.’ in the conditional sums on the r.h.s. of the recurrence stands for ‘such that’). Proof. As a (q → 0) degeneration of the principal specialization formula for the Macdonald– Koornwinder polynomials (see, e.g., [3, equations (6.1), (6.18), (6.43a)]) one finds that (assuming momentarily t1 > 0): pλ (i log(τ1), . . . , i log(τn)) = 1 cλ , with cλ taken from equation (6b). This implies that the normalization of Pλ(ξ) (6) is such that the polynomials in question satisfy a (q → 0) degeneration of the Pieri-type recurrence formula in equations (6.4), (6.5), (6.12), (6.13) of [3], which – upon performing the limit – produces equation (7). � Semi-Infinite q-Boson System 5 3 Boundary interactions for the semi-infinite q-boson system 3.1 Deformed q-boson field algebra Let `2(Λn,N ) be the Hilbert space of functions f : Λn → C determined by the inner product 〈f, g〉n := ∑ λ∈Λn f(λ)g(λ)Nλ, f, g ∈ `2(Λn,N ), with Nλ given by equation (4b) and the convention that Λ0 := {∅} and `2(Λ0,N ) := C. We think of `2(Λn,N ) as the Hilbert space for a system of n quantum particles on the nonnegative integer lattice N := {0, 1, 2, . . .} (i.e. the parts λj , j = 1, . . . , n of λ ∈ Λn encode the positions of the particles in question). In the Fock space H := ⊕ n≥0 `2(Λn,N ), (8) consisting of all sequences ∑ n≥0 fn with fn ∈ `2(Λn,N ) such that ∑ n≥0 〈fn, fn〉n <∞, we introduce bounded annihilation operators βl, l ∈ N that are perturbed at the boundary site ` = 0 and act on f ∈ `2(Λn,N ) via (βlf)(λ) := f(β∗l λ)( 1− tq2m0(λ)+m1(λ) )δl , λ ∈ Λn−1, (9a) if n > 0, and βlf := 0 if n = 0. Here β∗l λ ∈ Λn is obtained from λ by adding a part of size l. The action on f ∈ `2(Λn,N ) of the adjoint of βl in H produces the creation operator (β∗l f)(λ) = f(βlλ)[ml(λ)] ( 1− tq2m0(λ)+m1(λ)−1 )δl+δl−1 (9b) ×  ( 1− tqm0(λ)−2 ) ∏ 1≤r<s≤4 ( 1− trtsqm0(λ)−1 ) ( 1− tq2m0(λ)−3 )( 1− tq2m0(λ)−2 )2( 1− tq2m0(λ)−1 )  δl , λ ∈ Λn+1, if ml(λ) > 0, and (β∗l f)(λ) = 0 otherwise. Here βlλ ∈ Λn is obtained from λ with ml(λ) > 0 by discarding a part of size l. In the present setting, the role of the number operators is played by the bounded multiplication operators (Nlf)(λ) := qml(λ)f(λ), f ∈ `2(Λn,N ), λ ∈ Λn, l ∈ N. (10) When t 6= qm for m = 1, 2, 3, . . ., the creation and annihilation operators β∗l , βl together with the commuting operators Nl, (1− tqcN2 0 )−1, (1− tqcN2 0N1)−1 (where l ∈ N and c ∈ Z) represent a four-parameter deformation of the q-boson field algebra at the boundary sites l = 0 and l = 1: βlNk = qδl−kNkβl, β∗l Nk = q−δl−kNkβ ∗ l , (11a) β∗l βl = 1−Nl 1− q ( 1− q−1tN2 0N1 )δl+δl−1 ×  ( 1− q−2tN0 ) ∏ 1≤r<s≤4 ( 1− q−1trtsN0 ) ( 1− q−3tN2 0 )( 1− q−2tN2 0 )2( 1− q−1tN2 0 )( 1− q−2tN2 0N1 )  δl , (11b) βlβ ∗ l = 1− qNl 1− q ( 1− tN2 0N1 )−δl+δl−1 × 6 J.F. van Diejen and E. Emsiz ×  ( 1− q−1tN0 )( 1− qtN2 0N1 ) ∏ 1≤r<s≤4 (1− trtsN0)( 1− q−1tN2 0 )( 1− tN2 0 )2( 1− qtN2 0 )  δl , (11c) and for l < k βlβk = ( 1− qtN2 0N1 1− tN2 0N1 )δlδk−1 βkβl, β∗l β ∗ k = β∗kβ ∗ l ( 1− tN2 0N1 1− qtN2 0N1 )δlδk−1 , (11d) and βlβ ∗ k = ( 1− qtN2 0N1 1− tN2 0N1 )δlδk−1 β∗kβl, β∗l βk = βkβ ∗ l ( 1− tN2 0N1 1− qtN2 0N1 )δlδk−1 . (11e) Indeed, it is straightforward to verify the commutation relations in equations (11) upon com- puting the explicit actions of both sides on an arbitrary function f ∈ `2(Λn,N ) with the aid of the formulas in equations (9) and (10). 3.2 Hamiltonian The Hamiltonian of our semi-infinite q-boson system with boundary interaction is of the form H = V (N0, N1) + ∑ l∈N ( β∗l βl+1 + β∗l+1βl ) , (12) where V (N0, N1) denotes a boundary potential that depends rationally on N0 and N1. By construction, H (12) preserves the n-particle sector `2(Λn,N ) ⊂ H and we will denote the restriction of the Hamiltonian to this n-particle subspace by Hn. Proposition 2 (n-particle Hamiltonian). For any f ∈ `2(Λn,N ) and λ ∈ Λn, one has that (Hnf)(λ) = V ( qm0(λ), qm1(λ) ) f(λ) + ∑ 1≤j≤n s.t. λ+ej∈Λn v+ j (λ)f(λ+ ej) + ∑ 1≤j≤n s.t. λ−ej∈Λn v−j (λ)f(λ− ej), (13a) with v+ j (λ) := [mλj (λ)] ( 1− tq2m0(λ)+m1(λ)−1 )δλj−1+δλj ×  ( 1− tqm0(λ)−2 ) ∏ 1≤r<s≤4 ( 1− trtsqm0(λ)−1 ) ( 1− tq2m0(λ)−3 )( 1− tq2m0(λ)−2 )2( 1− tq2m0(λ)−1 )  δλj , (13b) v−j (λ) := [mλj (λ)]. (13c) Proof. It is immediate from the explicit actions of βl and β∗l in equations (9) that for any l ∈ N: (βl+1β ∗ l f)(λ) = 0 if ml(λ) = 0 and (β∗l βl+1f)(λ) = [mλj (λ)] ( 1− tq2m0(λ)+m1(λ)−1 )δl−1+δl ×  ( 1− tqm0(λ)−2 ) ∏ 1≤r<s≤4 ( 1− trtsqm0(λ)−1 ) ( 1− tq2m0(λ)−3 )( 1− tq2m0(λ)−2 )2( 1− tq2m0(λ)−1 )  δl f(β∗l+1βlλ) Semi-Infinite q-Boson System 7 if ml(λ) > 0, where β∗l+1βlλ = λ+ ej with j = min{k | λk = l} (so l = λj). Along the same lines it is seen that (β∗l+1βlf)(λ) = 0 if ml+1(λ) = 0 and (β∗l+1βlf)(λ) = [ml+1(λ)]f(β∗l βl+1λ) if ml+1(λ) > 0, where β∗l βl+1λ = λ−ej with j = max{k | λk = l+1} (so l = λj−1). The stated formula thus follows because the boundary potential acts (by definition) via the multiplication (V (N0, N1)f)(λ) = V ( qm0(λ), qm1(λ) ) f(λ). � 3.3 Diagonalization From now on we will pick the boundary potential V (N0, N1) in H (12) of the form V (N0, N1) = t−1 1 tN0 + t1N0 1− ( 1− q−1tN0 ) ∏ 1<r<s≤4 (1− trtsN0)( 1− tN2 0 )( 1− q−1tN2 0 )   1−N1 1− q (14) + t1 + qt−1 1 N−1 0 1− ( 1− q−1tN2 0N1 ) ∏ 1<r≤4 ( 1− q−1t1trN0 ) ( 1− q−2tN2 0 )( 1− q−1tN2 0 )   1−N0 1− q . By writing the action of V (N0, N1) (14) on an arbitrary f ∈ `2(Λn,N ) as a rational expression in the parameters tr (r = 1, . . . , 4), it is readily seen – upon canceling possible common factors in the numerators and denominators – that V (N0, N1) constitutes a bounded multiplication operator in `2(Λn,N ). It follows moreover from the Pieri recurrence in Proposition 1 and the explicit formula for Hn in Proposition 2 that the Hamiltonian with this boundary potential is diagonalized in the n-particle subspace by a hyperoctahedral Hall–Littlewood wave function φξ : Λn → C of the form φξ(λ) := 1 Nλ pλ(ξ), λ ∈ Λn, (15) where ξ ∈ Tn plays the role of the spectral parameter. Proposition 3 (n-particle eigenfunctions). The hyperoctahedral Hall–Littlewood wave func- tion φξ (15) satisfies the eigenvalue equation Hnφξ = En(ξ)φξ with En(ξ) := 2 ∑ 1≤j≤n cos(ξj) (16) for Hn given by equations (13) with V (N0, N1) taken from equation (14). Proof. By comparing the normalization of φξ(λ) (15) and Pλ(ξ) (6), one concludes that φξ(λ) = 1 hλ Pλ(ξ) with hλ = cλNλ = τλ11 · · · τλnn ( tqm0(λ)−1 ) m0(λ) ∏ 1<r<s≤4 ( trtsq m0(λ) ) n−m0(λ)( tqn−1 ) n N0. It is thus immediate from equation (7) that V ( qm0(λ), qm1(λ) ) φξ(λ) + ∑ 1≤j≤n s.t. λ+ej∈Λn v+ j (λ)φξ(λ+ ej) + ∑ 1≤j≤n s.t. λ−ej∈Λn v−j (λ)φξ(λ− ej) = En(ξ)φξ(λ), 8 J.F. van Diejen and E. Emsiz with v+ j (λ) = V + j (λ) hλ+ej hλ , v−j (λ) = V −j (λ) hλ−ej hλ and V ( qm0(λ), qm1(λ) ) = ∑ 1≤j≤n ( τj + τ−1 j ) − ∑ 1≤j≤n s.t. λ+ej∈Λn V + j (λ)− ∑ 1≤j≤n s.t. λ−ej∈Λn V −j (λ). By plugging in the explicit expressions for V + j (λ), V −j (λ), and hλ, and employing the elementary identity∑ 1≤j≤n ( τj + τ−1 j ) − ∑ 1≤j≤n s.t. λ+ej∈Λn τ−1 j [mλj (λ)]− ∑ 1≤j≤n s.t. λ−ej∈Λn τj [mλj (λ)] = t1[m0(λ)], the coefficients v+ j (λ), v−j (λ) and V (qm0(λ), qm1(λ)) are rewritten in the form given by equa- tions (13b), (13c) and (14). � Remark 2. The diagonalization in Proposition 3 in terms of the hyperoctahedral Hall–Little- wood polynomials implies that our q-boson Hamiltonian Hn is unitarily equivalent to a mul- tiplication operator governed by the eigenvalue En(ξ) (16). A complete system of commuting quantum integrals for Hn is obtained via this unitary equivalence from the multiplication ope- rators associated with the elements of the algebra A of W -invariant trigonometric polynomials on Tn. It remains an open problem to present an explicit construction in the spirit of [4] that lifts H (12) with V (N0, N1) given by equation (14) to an infinite hierarchy of commuting ope- rators in the Fock space H (8), reproducing the quantum integrals of Hn upon restriction to the n-particle subspace `2(Λn,N ). 4 Ultralocality and coordinate Bethe ansatz For general parameter values the deformation of the q-boson field algebra in Section 3.1 fails to be ultralocal, as the commutativity between the creation and annihilation operators at sites l = 0 and l = 1 is broken. The commutativity (and hence ultralocality) is restored when at least one of the four boundary parameters tr tends to zero (so t→ 0). It is furthermore clear from the explicit expression in equations (5) for the hyperoctahedral Hall–Littlewood polynomial pλ (1) that the wave function φξ (15) fails to be of the usual coordinate Bethe ansatz form (at the boundary), as the expansion coefficients Cλ(wξ) of the plane waves e−i〈wξ,λ〉 depend on (the number of nonzero parts of) λ. By letting at least two of the four boundary parameters tr tend to zero the polynomial pλ (1) reduces to Macdonald’s Hall–Littlewood polynomial associated with the root system of type BC, which implies that in this limiting case it is possible to rewrite the wave function in the conventional Bethe ansatz form. We end up by detailing our construction for these three- and two-parameter specializations of the boundary interaction. 4.1 Three-parameter reduction When t4 → 0 (so t → 0), the quadratic norm Nλ (4b) determining inner product of the Fock space H (8) simplifies to Nλ = (1− q)n∏ 1≤r<s≤3 (trts)m0(λ) ∏ l≥0 (q)ml(λ) . Semi-Infinite q-Boson System 9 The actions of the annihilation and creation operators (9) on f ∈ `2(Λn,N ) then reduce to (βlf)(λ) = f(β∗l λ), λ ∈ Λn−1 with the convention that βlf = 0 if n = 0, and (β∗l f)(λ) = f(βlλ)[ml(λ)] ∏ 1≤r<s≤3 ( 1− trtsqm0(λ)−1 )δl , λ ∈ Λn+1 with the convention that (β∗l f)(λ) = 0 if ml(λ) = 0, respectively. Together with the commuting operators Nl (10) the creation and annihilation operators in question represent a three-parameter deformation of the q-boson field algebra at the boundary site l = 0: βlNk = qδl−kNkβl, β∗l Nk = q−δl−kNkβ ∗ l , β∗l βl = 1−Nl 1− q ∏ 1≤r<s≤3 ( 1− q−1trtsN0 )δl , βlβ ∗ l = 1− qNl 1− q ∏ 1≤r<s≤3 (1− trtsN0)δl , preserving the ultralocality: βlβk = βkβl, β∗l β ∗ k = β∗kβ ∗ l , βlβ ∗ k = β∗kβl, β∗l βk = βkβ ∗ l if l < k. The corresponding q-boson Hamiltonian H (12), with the pertinent reduction of the boundary potential V (N0, N1) (14) given by V (N0, N1) = ( t1 + t2 + t3 − q−1t1t2t3N0 )(1−N0 1− q ) + t1t2t3N 2 0 ( 1−N1 1− q ) , acts on f in the n-particle subspace `2(Λn,N ) via (Hnf)(λ) = ∑ 1≤j≤n s.t. λ+ej∈Λn f(λ+ ej)[mλj (λ)] ∏ 1≤r<s≤3 ( 1− trtsqm0(λ)−1 )δλj + ∑ 1≤j≤n s.t. λ−ej∈Λn f(λ− ej)[mλj (λ)] + f(λ) (( t1 + t2 + t3 − q−1t1t2t3q m0(λ) ) [m0(λ)] + t1t2t3q 2m0(λ)[m1(λ)] ) . 4.2 Two-parameter reduction From the defining orthogonality and the triangularity properties of the hyperoctahedral Hall– Littlewood polynomials pλ, λ ∈ Λn detailed in Section 2.1, it is read-off that for t3, t4 → 0 these polynomials reduce to Macdonald’s Hall–Littlewood polynomials associated with the BC type root system [9, § 10]. This implies that they can be rewritten in terms of Macdonald’s formula: pλ(ξ) = Nλ ∑ w∈W C(wξ)e−i〈λ,wξ〉, (17a) with C(ξ) = ∏ 1≤j<k≤n ( 1− qei(ξj−ξk) )( 1− qei(ξj+ξk) )( 1− ei(ξj−ξk) )( 1− ei(ξj+ξk) ) ∏ 1≤j≤n ( 1− t1eiξj )( 1− t2eiξj ) 1− e2iξj (17b) 10 J.F. van Diejen and E. Emsiz and Nλ = (1− q)n (t1t2)m0(λ) ∏ l≥0 (q)ml(λ) . (17c) Notice in this connection that one does not directly retrieve Macdonald’s formula (17) by per- forming the limit t3, t4 → 0 in Venkateswaran’s formula (5). Instead, the equivalence of the two formulas (for this specialization of the parameters) is not obvious and rather follows from the fact that both expressions represent the same polynomials of the form in equations (1) and ∆ given by equation (3b) with t3 = t4 = 0 [9, 16]. Since the expansion coefficients C(wξ) in equations (17) no longer depend on (the number of nonzero parts of) λ, in the present situation the coordinate Bethe ansatz form of the wave function φξ (15) is seen to extend from the bulk sites (at ` > 0) to the boundary site (at ` = 0). The actions of the annihilation and creation operators (9) on f ∈ `2(Λn,N ) now reduce to (βlf)(λ) = f(β∗l λ), λ ∈ Λn−1 (18a) with the convention that βlf = 0 if n = 0, and (β∗l f)(λ) = f(βlλ)[ml(λ)] ( 1− t1t2qm0(λ)−1 )δl , λ ∈ Λn+1 (18b) with the convention that (β∗l f)(λ) = 0 if ml(λ) = 0. We thus arrive at an ultralocal two- parameter deformation of the q-boson field algebra at the boundary site l = 0 represented by βl, β ∗ l (18) and Nl (10), l ∈ N: βlNk = qδl−kNkβl, β∗l Nk = q−δl−kNkβ ∗ l , β∗l βl = 1−Nl 1− q ( 1− q−1t1t2N0 )δl , βlβ ∗ l = 1− qNl 1− q (1− t1t2N0)δl , and βlβk = βkβl, β∗l β ∗ k = β∗kβ ∗ l , βlβ ∗ k = β∗kβl, β∗l βk = βkβ ∗ l if l < k. The corresponding q-boson Hamiltonian H (12), with the reduction of the boundary potential V (N0, N1) (14) given by V (N0, N1) = V (N0) := (t1 + t2) ( 1−N0 1− q ) , acts on f in the n-particle subspace `2(Λn,N ) via (Hnf)(λ) = ∑ 1≤j≤n s.t. λ+ej∈Λn f(λ+ ej)[mλj (λ)] ( 1− t1t2qm0(λ)−1 )δλj + ∑ 1≤j≤n s.t. λ−ej∈Λn f(λ− ej)[mλj (λ)] + f(λ) (t1 + t2) [m0(λ)]. (19) The latter semi-infinite q-boson model with two-parameter boundary interactions was introduced and studied in more detail in [5]. Remark 3. When q → 0 and tr → 0 (r = 1, . . . , 4), the action of our n-particle Hamiltonian Hn on f : Λn → C reduces to that of a discrete Laplacian (Hn,0f)(λ) = ∑ 1≤j≤n s.t. λ+ej∈Λn f(λ+ ej) + ∑ 1≤j≤n s.t. λ−ej∈Λn f(λ− ej) Semi-Infinite q-Boson System 11 modeling a system of n impenetrable bosons on N. In [5, Section 5] it was shown that the large- times asymptotics of the q-boson dynamics generated by Hn (19) is related to the impenetrable boson dynamics of Hn,0 (3) via an n-particle scattering matrix of the form S(ξ) = ∏ 1≤j<k≤n s(ξj − ξk)s(ξj + ξk) ∏ 1≤j≤n s0(ξj), (20a) with s(x) = 1− qe−ix 1− qeix and s0(x) = (1− t1e−ix)(1− t2e−ix) (1− t1eix)(1− t2eix) . (20b) The discussion in [5, Section 5] applies verbatim to our more general Hamiltonian Hn from Proposition 2 with V (N0, N1) given by equation (14), upon replacing s0(x) (20b) by s0(x) = 4∏ r=1 1− tre−ix 1− treix . This reveals that the n-particle scattering matrix of the model factorizes in two-particle bulk scattering matrices s(·) governed by a coupling parameter q and one-particle boundary scattering matrices s0(·) governed by coupling parameters t1, . . . , t4. Acknowledgments We are grateful to Alexei Borodin and Ivan Corwin for helpful email exchanges and thank the referees for their constructive comments. This work was supported in part by the Fondo Nacional de Desarrollo Cient́ıfico y Tecnológico (FONDECYT) Grants # 1130226 and # 11100315, and by the Anillo ACT56 ‘Reticulados y Simetŕıas’ financed by the Comisión Nacional de Investigación Cient́ıfica y Tecnológica (CONICYT). References [1] Bogoliubov N.M., Izergin A.G., Kitanine N.A., Correlation functions for a strongly correlated boson system, Nuclear Phys. B 516 (1998), 501–528, solv-int/9710002. [2] Borodin A., Corwin I., Petrov L., Sasamoto T., Spectral theory for the q-boson particle system, arXiv:1308.3475. [3] van Diejen J.F., Properties of some families of hypergeometric orthogonal polynomials in several variables, Trans. Amer. Math. Soc. 351 (1999), 233–270, q-alg/9604004. [4] van Diejen J.F., Emsiz E., Diagonalization of the infinite q-boson system, arXiv:1308.2237. [5] van Diejen J.F., Emsiz E., The semi-infinite q-boson system with boundary interaction, Lett. Math. Phys., to appear, arXiv:1308.2242. [6] Klimyk A., Schmüdgen K., Quantum groups and their representations, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997. [7] Koornwinder T.H., Askey–Wilson polynomials for root systems of type BC, in Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991), Contemp. Math., Vol. 138, Amer. Math. Soc., Providence, RI, 1992, 189–204. [8] Korff C., Cylindric versions of specialised Macdonald functions and a deformed Verlinde algebra, Comm. Math. Phys. 318 (2013), 173–246, arXiv:1110.6356. [9] Macdonald I.G., Orthogonal polynomials associated with root systems, Sém. Lothar. Combin. 45 (2000), Art. B45a, 40 pages, math.QA/0011046. [10] Macdonald I.G., Affine Hecke algebras and orthogonal polynomials, Cambridge Tracts in Mathematics, Vol. 157, Cambridge University Press, Cambridge, 2003. http://dx.doi.org/10.1016/S0550-3213(98)00038-8 http://arxiv.org/abs/solv-int/9710002 http://arxiv.org/abs/1308.3475 http://dx.doi.org/10.1090/S0002-9947-99-02000-0 http://arxiv.org/abs/q-alg/9604004 http://arxiv.org/abs/1308.2237 http://dx.doi.org/10.1007/s11005-013-0657-y http://arxiv.org/abs/1308.2242 http://dx.doi.org/10.1090/conm/138/1199128 http://dx.doi.org/10.1007/s00220-012-1630-9 http://dx.doi.org/10.1007/s00220-012-1630-9 http://arxiv.org/abs/1110.6356 http://arxiv.org/abs/math.QA/0011046 http://dx.doi.org/10.1017/CBO9780511542824 12 J.F. van Diejen and E. Emsiz [11] Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995. [12] Povolotsky A.M., On integrability of zero-range chipping models with factorized steady state, J. Phys. A: Math. Theor. 46 (2013), 465205, 25 pages, arXiv:1308.3250. [13] Sasamoto T., Wadati M., Exact results for one-dimensional totally asymmetric diffusion models, J. Phys. A: Math. Gen. 31 (1998), 6057–6071. [14] Takeyama Y., A discrete analogue of periodic delta Bose gas and affine Hecke algebra, arXiv:1209.2758. [15] Tsilevich N.V., The quantum inverse scattering problem method for the q-boson model and symmetric functions, Funct. Anal. Appl. 40 (2006), 207–217, math-ph/0510073. [16] Venkateswaran V., Symmetric and nonsymmetric Hall–Littlewood polynomials of type BC, arXiv:1209.2933. http://dx.doi.org/10.1017/CBO9780511613104 http://dx.doi.org/10.1088/1751-8113/46/46/465205 http://dx.doi.org/10.1088/1751-8113/46/46/465205 http://arxiv.org/abs/1308.3250 http://dx.doi.org/10.1088/0305-4470/31/28/019 http://dx.doi.org/10.1088/0305-4470/31/28/019 http://arxiv.org/abs/1209.2758 http://dx.doi.org/10.1007/s10688-006-0032-1 http://arxiv.org/abs/math-ph/0510073 http://arxiv.org/abs/1209.2933 1 Introduction 2 Hyperoctahedral Hall-Littlewood polynomials 2.1 Orthogonality 2.2 Explicit formula 2.3 Pieri-type recurrence relation 3 Boundary interactions for the semi-infinite q-boson system 3.1 Deformed q-boson field algebra 3.2 Hamiltonian 3.3 Diagonalization 4 Ultralocality and coordinate Bethe ansatz 4.1 Three-parameter reduction 4.2 Two-parameter reduction References