EEG Analysis of Person Familiarity with Audio-Video Data Assessing Task
To solve the problem of assessing a person’s familiarity with audio-video data, various methods of machine learning were compared. The feature space has been optimized for the best way to make such an assessment. The high efficiency of the genetic algorithm in the problem of optimizing the space of...
Збережено в:
Дата: | 2018 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України
2018
|
Назва видання: | Управляющие системы и машины |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/150491 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | EEG Analysis of Person Familiarity with Audio-Video Data Assessing Task / D.S. Reshetnykov // Управляющие системы и машины. — 2018. — № 4. — С. 70-83. — Бібліогр.: 26 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-150491 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1504912019-04-09T01:25:42Z EEG Analysis of Person Familiarity with Audio-Video Data Assessing Task Reshetnykov, D.S. Применения (опыт разработки и внедрения информационных технологий) To solve the problem of assessing a person’s familiarity with audio-video data, various methods of machine learning were compared. The feature space has been optimized for the best way to make such an assessment. The high efficiency of the genetic algorithm in the problem of optimizing the space of attributes is shown. Мета статті. Виконати порівняльний аналіз і експериментальне дослідження ефективності різних методів машинного навчання для побудови моделі визначення знайомства з аудіовізуальними матеріалами, на основі аналізу сигналу електроенцефалограм і визначити набір ознак, які найкраще класифікують даний сигнал. Результат. За використання запропонованої інформаційної технології підібрано параметри і отримано результати точності для різних моделей класифікації, що дозволило порівняти такі моделі і визначити найбільш адекватні до вирішення поставленої задачі. Застосування методів відбору ознак дозволило підвищити точність моделі лінійного методу опорних векторів з 55,9 до 80,7 відсотків. Цель статьи. Выполнить сравнительный анализ и экспериментальное исследование эффективности различных методов машинного обучения для построения модели определения знакомства с представленными аудиовизуальными материалами, на основе анализа сигнала электроэнцефалограмм и определить набор признаков, наилучшим образом классифицирующих данный сигнал. Результат. С использованием предложенной информационной технологии, подобраны параметры и получены результаты точности для различных моделей классификации, что позволило сравнить такие модели и определить наиболее адекватные решению поставленной задачи. Применение методов отбора признаков позволило повысить точность модели линейного метода опорных векторов с 55,9 до 80,7 процентов. 2018 Article EEG Analysis of Person Familiarity with Audio-Video Data Assessing Task / D.S. Reshetnykov // Управляющие системы и машины. — 2018. — № 4. — С. 70-83. — Бібліогр.: 26 назв. — англ. 0130-5395 DOI: https://doi.org/10.15407/usim.2018.04.0070 http://dspace.nbuv.gov.ua/handle/123456789/150491 574: 004.2 en Управляющие системы и машины Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Применения (опыт разработки и внедрения информационных технологий) Применения (опыт разработки и внедрения информационных технологий) |
spellingShingle |
Применения (опыт разработки и внедрения информационных технологий) Применения (опыт разработки и внедрения информационных технологий) Reshetnykov, D.S. EEG Analysis of Person Familiarity with Audio-Video Data Assessing Task Управляющие системы и машины |
description |
To solve the problem of assessing a person’s familiarity with audio-video data, various methods of machine learning were compared. The feature space has been optimized for the best way to make such an assessment. The high efficiency of the genetic algorithm in the problem of optimizing the space of attributes is shown. |
format |
Article |
author |
Reshetnykov, D.S. |
author_facet |
Reshetnykov, D.S. |
author_sort |
Reshetnykov, D.S. |
title |
EEG Analysis of Person Familiarity with Audio-Video Data Assessing Task |
title_short |
EEG Analysis of Person Familiarity with Audio-Video Data Assessing Task |
title_full |
EEG Analysis of Person Familiarity with Audio-Video Data Assessing Task |
title_fullStr |
EEG Analysis of Person Familiarity with Audio-Video Data Assessing Task |
title_full_unstemmed |
EEG Analysis of Person Familiarity with Audio-Video Data Assessing Task |
title_sort |
eeg analysis of person familiarity with audio-video data assessing task |
publisher |
Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України |
publishDate |
2018 |
topic_facet |
Применения (опыт разработки и внедрения информационных технологий) |
url |
http://dspace.nbuv.gov.ua/handle/123456789/150491 |
citation_txt |
EEG Analysis of Person Familiarity with Audio-Video Data Assessing Task / D.S. Reshetnykov // Управляющие системы и машины. — 2018. — № 4. — С. 70-83. — Бібліогр.: 26 назв. — англ. |
series |
Управляющие системы и машины |
work_keys_str_mv |
AT reshetnykovds eeganalysisofpersonfamiliaritywithaudiovideodataassessingtask |
first_indexed |
2025-07-13T00:13:02Z |
last_indexed |
2025-07-13T00:13:02Z |
_version_ |
1837488524959416320 |
fulltext |
70 ISSN 0130-5395, Control systems and computers, 2018, № 4
DOI https://doi.org/10.15407/usim.2018.04.0070
УДК 574: 004.2
D.S. RESHETNYKOV, graduate student,
International Research and Training Center
for Information Technologies and Systems of the NAS and MES of Ukraine,
Glushkov ave., 40, Kyiv, 03187, Ukraine,
denis.reshetnykov@gmail.com
EEG ANALYSIS OF PERSON FAMILIARITY
WITH AUDIO-VIDEO DATA ASSESSING TASK
To solve the problem of assessing a person’s familiarity with audio-video data, various methods of machine learning were com-
pared. The feature space has been optimized for the best way to make such an assessment. The high efficiency of the genetic algo-
rithm in the problem of optimizing the space of attributes is shown.
Keywords: machine learning, genetic algorithm, electroencephalogram, DEAP dataset, emotion recognition
Introduction
Assessment of the emotional state of students in the
process of studying the lecture material is an impor-
tant task in both scientific and practical terms [1].
However, such studies are rather complicated due to
the fact that the indicators of the emotional state dif-
fer considerably, depending on whether the studied
material is familiar to the student or not [2].
Studies [3, 4] show that the assessment of the
degree of familiarity with the presented material
allows much more accurate assessment of the emo-
tional state. Dynamic evaluation of familiarity with
the materials, also allows us to estimate the speed
of the skills mastering, which require repetition of
the material, as shown in [5] using the example of
evaluating familiarity with integrated development
environments.
Thus, the control of the educational process
would be much more effective if it were possible to
objectively evaluate, by the totality of signs, the fa-
miliarity of a particular student with the materials
presented to him/her.
Evaluation of the level of familiarity with the
presented audiovisual data is also needed in other
areas, in particular, in the developing area of neu-
romarketing research [6—8].
Purpose
The purpose of the article is to conduct a compara-
tive analysis and experimental study of the effec-
tiveness of various machine learning methods, to
build a model for determining familiarity with the
presented audiovisual materials, based on the anal-
ysis of the user’s EEG signal, and to determine the
set of signs that best classify this signal.
Using the EEG signal
in the analysis of cognitive activity
Due to technical progress in the methods of extrac-
tion and filtering of EEG, as well as the spread of
EEG monitors with a reasonably simple connec-
tion to a PC, it is theoretically possible to use EEG
monitoring to determine whether a person is famil-
iar with the presented audio-video data.
It is known that the cognitive activity of the brain
in many states correlates with EEG indices [9]. So
in recent studies, precise correlates of EEG have
Eeg analysis of person familiarity with audio-video data assessing task
ISSN 0130-5395, УСиМ, 2018, № 4 71
been found with orientation in an imaginary maze
[10], solving verbal and spatial problems [11, 12].
To solve the general problem of analyzing cogni-
tive activity, in addition, to pick up a signal, it is
necessary to solve several types of problems.
The first type is directly related to the physical na-
ture and methods of the EEG signal extraction. EEG
sensors record the total activity of many independent
sources (individual neurons) from the surface of the
skull, which leads to the fact that the received signal is
noisy and has recording artifacts. These artifacts can
reveal themselves either as a result of external (pick-
ups from electrical equipment, poorly fixed elec-
trodes) and for internal reasons (for example, changes
in potential due to eye movement or electrical muscle
activity). Given the chaotic nature of the EEG signal,
even a small noise can significantly change the analy-
sis results. Fortunately, there are well-established
methods of automatic filtering and error correction.
These include noise suppressing filters of high and
low frequencies, filters with a finite impulse response,
the common average reference [13].
The second type of the tasks is associated with the
difficulties of analyzing and interpreting obtained
data. In the absence of objective features of cognitive
activity in the original signal of an electroencephalo-
gram, one or several methods of identifying character-
istic features are traditionally used in EEG analysis:
statistical analysis;
spectral analysis;
signal analysis in the time-frequency domain.
The statistical analysis considers various statisti-
cal characteristics of the signal, such as dispersion
and an average signal value, it is the least complex
(of the above) methods and is often used in addition
to other methods [14].
Spectral analysis basically contains a signal con-
version from the amplitude-time to a frequency
domain. Within this conversion, signal power is
calculated in various frequency ranges (commonly
known as alpha, beta, delta, and others). This type
of analysis has been widely used in various medical
and non-medical tasks of EEG analysis, and the
characteristics obtained through its use correlate
with such cognitive processes as attention [15], a
solution of spatial and verbal problems [16], read-
ing and mental calculation [9].
The third type of task is the selection of significant
features. It is known that different areas of the brain
are responsible for different types of cognitive activ-
ity [17]. Although currently there are only few unam-
biguous indicators of the participation of the certain
brain areas in a specific cognitive task, it is possible to
note that not all areas of the brain, and not all char-
acteristics of the EEG signal will contribute equally.
This fact creates the need for feature selection to im-
prove classification accuracy. In addition, reducing
the dimension of the feature space significantly re-
duces the computational complexity of many math-
ematical analysis algorithms, which is especially use-
ful in real-time execution applications.
The last, fourth task is the selection and optimi-
zation of a mathematical classification model. This
class of tasks is a subclass of the currently popular
class of supervised machine learning problems, and
has many solutions, such as logistic regression, a
naive Bayes classifier, decision trees (as well as en-
semble models based on this method), the k-near-
est neighbors method, linear support vector ma-
chine (and its nuclear version) and various neural
network models.
It is important to note that the third (the choice
of significant features) and the fourth (selection
and optimization of the model) tasks are strongly
related (the choice of significant features in prac-
tice may largely depend on the model), and for this
reason are performed in an arbitrary order.
Analysis of existing approaches to solving the
classification problem
Before proceeding to the solution of the prob-
lem, we will briefly describe the existing approach-
es to machine classification, which will be used in
experimental studies.
Logistic regression. This model considers the
probability of occurrence of an event as a depend-
ent variable
0 1 1( ... )
1
1 exp n nx xy θ θ θ− + + +=
+
, (1)
where x
1
, …, x
n
— is a set of independent variables,
and θ
0
, …, θ
n
— regression coefficients.
Naive Bayes classifier. This model is based on the
maximum aposterior probability and treats each
input parameter as an independent variable. Thus,
the probability of occurrence of the desired event
D.S. Reshetnykov
72 ISSN 0130-5395, Control systems and computers, 2018, № 4
is defined as
( | ) ( )( | )
( )
P X c P cP c X
P X
= , (2)
where P(c|X) is the a posteriori probability of class c
with a given set of independent variables X, P(c) —
is the a priori probability of a given class, P(X|c) —
is the probability of a given characteristic values for
a given class, P(X) — is the probability of a given
characteristic value.
Decision trees. The method of the decision trees
is based on the idea of recursive division of the set
of elements of X into such subsets in order to maxi-
mize entropy. To do this, first calculate the entropy
of the original set:
2
1
( ) log
n
i i
i
H X p p
=
= −∑ (3)
and then at each step of the algorithm, the infor-
mation increment function is calculated for each
of the attributes of the set:
( )
( , ) ( ) ( )a
a
a values A
X
Gain X A H X H X
X∈
= − ∑ (4)
where values(A) are all received attribute values of
A, X
a
is a subset of the data set in which A = a, |X| —
the number of elements in the set.
The attribute with the largest information in-
crease is selected as separating for a given step,
and the algorithm proceeds to the next step. The
number of steps of the algorithm (called tree depth)
is a configurable parameter.
Method k-neighbors. The method is based on
the principle of similarity of the object with the ma-
jority of the nearest neighbors. For this, for each ob-
ject from the test sample, the distance to all objects
of the training sample is calculated, and the object
class is determined as the most frequent among the
k closest objects.
1
arg max ( )
k
k
k
y I y y
=
= ==∑ , (5)
The parameter k is a configurable parameter of
this method.
Linear method of support vector machines (SVM).
This method occupies an important place in the
modern theory of the pattern recognition and suc-
cessfully competes with the multilayer neural net-
work pattern recognition systems [18].
Let there be a training set:: (x
1
, y
1
), …, (x
m
, y
m
),
x
i
∈ Rn, y
i
∈{-1,1}. The idea of the method for the
binary classification problem is to divide all the
learning points by the classifier hyperplane so that
the separation and the difference between the 2
classes are maximum. The classifier hyperplane is
defined by the function:
, 0w x b〈 〉 + = , (6)
where w is a normal vector to the separating hyper-
plane, b — is an auxiliary parameter. To do this, the
optimization problem is solved:
(7)
The kernel method of support vector machines.
This method is a generalization of the SVM meth-
od for linearly inseparable cases and is based on the
mapping of the original features of Х into a space of
higher dimension ϕ: Rn→X where the set becomes
linearly separable. Thus (6) takes the form
( ) sign( , )F x w x b= 〈 〉 + (8)
The function K : X × X → R is called the ker-
nel, if it can be represented in the form of K(x,x′) =
= 〈φ(x),φ(x′)〉
H
with a mapping φ: X → H, where
H — space with scalar product.
The task of building a model using the kernel me-
thod of SVM is reduced to choosing / building the
most optimal kernel for this task. Building an ad-
equate kernel is an art and, as a common practice, re-
lies on a priori knowledge of the subject domain [19].
Multilayer perceptron. A multilayer perceptron
is a neural network with forward propagation of an
error and has the following features:
consists of neurons with a continuously differ-
entiated activation function (usually logistic):
2
1( )
1 exp xf x θ−=
+
. (9)
contains several hidden layers of computation-
al neurons. These layers allow you to consistently
extract important features from the input image.
provides a fully connected network architecture [20].
In addition to the above methods, we will also
investigate the following ensemble models:
2
,
arg min
( , ) 1, 1,...,
w b
i iy w x b i m
w
⎧
⎪
⎨
⎪ 〈 〉 + ≥ =⎩ .
Eeg analysis of person familiarity with audio-video data assessing task
ISSN 0130-5395, УСиМ, 2018, № 4 73
Random forest. This algorithm is to build an ensem-
ble of decision trees. Each of the trees is constructed
from a fixed sample with a return, from the original
training set. The number of trees and the size of a fixed
sample are parameters of this method in addition to
the parameters of the decision trees themselves [21].
Gradient boosting decision trees. This method
considers the decision tree algorithm:
(10)
in which the feature space is divided into a finite fam-
ily of domains{X
j
}, in each of which β
j
is chosen inde-
pendently, in order to minimize the error. The error
function, for a fixed family {X
j
} takes the form:
( )
β
, ( ) β min
j
i j
i i j
x X
L y a x
∈
+ →∑ (11)
regulating parameter for the gradient boosting is the
speed of the gradient descent (also called the learn-
ing speed), and the configuration of the regions,
given by the depth of the trees and the number of
objects in trees [22].
Experimental design
The general block diagram of information tech-
nology for research is presented in Fig. 1. In the
“Building a classification model” stage, simple clas-
sification models imply logistic regression models,
naive Bayes, decision trees, k-neighbors, linear and
kernel SVM.
A set of real EEG from DEAP database [23] was
used for experiment. It represents multichannel re-
cordings of physiological signals (PS) of 29 volun-
teers. For each volunteer, 40 tests were conducted,
consisting of:
Fig.1. Research information technology block diagram.
( ) βj j
j
b x I x X⎡ ⎤= ∈⎣ ⎦∑
D.S. Reshetnykov
74 ISSN 0130-5395, Control systems and computers, 2018, № 4
1. Recording PS in the absence of a stimulus
(baseline) with a duration of 3 s.
2. Recording PS in the presence of a stimulus
(display of an audio-video fragment) with a dura-
tion of 60 s.
3. Evaluation of an audio-video fragment by sev-
eral parameters, including the “Familiarity” pa-
rameter.
The EEG signal was recorded from 32 leads, with
a sampling frequency of 512 Hz, according to the
standard “10—20” (extended) electrode arrange-
ment (Fig. 2).
Each subject signal records, subsampled to 128 Hz,
was saved to individual data files, and translated into
the numpy data format of the python programming
language. Each data file contains 40 segments cor-
responding to 63s records (3s of the baseline and 60s
of the stimulus). Therefore, overall dataset consists of
29 * 40 = 1160 data segments.
Before the beginning of the analysis, each data
segment was aligned with the mean value of the
baseline, and the corresponding 3s records were
excluded from further analysis. Since many ma-
chine learning methods are sensitive to data out-
liers, emissions of more than 2δ have been reduced
to a mean value:
1 1
1 1 1
1 1, 2 , 2
1 1 1, 2 , 2
M M
i i m m
m m
i M M M
m i m m
m m m
X X X X
M M
X
X X X X
M M M
δ δ
δ δ
= =
= = =
⎧ ⎡ ⎤
∈ − +⎪ ⎢ ⎥
⎪ ⎣ ⎦= ⎨
⎡ ⎤⎪ ∉ − +⎢ ⎥⎪ ⎣ ⎦⎩
∑ ∑
∑ ∑ ∑
(12)
To construct the initial feature space, each of the
1160 data segments was divided into 15 parts with
a duration of 4 s. Next, for each part, in each of the
32 leads, the signal power was calculated in 4 fre-
quency bands: theta (4—8 Hz), alpha (8—12 Hz),
beta (12—30 Hz), gamma (30—64 Hz) . Thus, for
each of the stimulus, we received 32 * 15 * 4 = 1920
characteristic features. Since most machine learn-
ing methods require normalized data, the obtained
spectral power values were normalized.
The initial target parameter “Familiarity” is pre-
sented in the form of values on an ordinal 5-point
scale. It was converted to a binary feature (“Famili-
arity”> = 3) and all data segments were divided into
2 derived classes. The ratio of classes in the original
sample is 0: 725 (62%), 1: 435 (38%). For further
use, the classes were balanced by dropping random
segments of a larger class. Thus, in a further study,
870 data segments, equally divided between the two
classes, were used.
For training and model testing, the resulting
data set was randomly divided into training and test
samples at a ratio of 70%/30%.
The model was measured using the accuracy
measure:
Accuracy P
N
= (13)
where P is the number of correctly classified data
points from test sample, N is the size of the test
sample.
Since the majority of the above models have a
number of hyperparameters, responsible for learn-
ing speed and regularization of the model, the val-
ues choice was carried out using the method of ex-
haustive search from the logarithmic scale
[0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30,
100, 300, 1000, 3000, 10000].
To implement the machine learning algorithms,
the Python programming language scikit-learn li-
Fig.2. The standard arrangement of electrodes “10—20”:
a — side projection; b — top view; c — extended “10—20”
scheme
Eeg analysis of person familiarity with audio-video data assessing task
ISSN 0130-5395, УСиМ, 2018, № 4 75
Fig. 3. Schematic representation of the data conversion to obtain the space of characteristic features: a — segmentation of
the signal into 4s parts; b — obtaining the spectral characteristics of the signal
brary [24] was used. For evaluation of models, selec-
tion of hyperparameters and genetic algorithm the
corresponding functions and modules in the Python
programming language were implemented.
The selection of the significant features was car-
ried out for a model built on the basis of the linear
SVM, since this model has a smaller number of
the regularization parameters, which made it pos-
sible to compare the different methods for select-
ing features.
Results of experimental studies
Using the above-described procedure for selecting
model parameters, the following parameters were
selected and the following model accuracy results
were obtained (table 1):
Models in the table marked with an asterisk
provide the accuracy of the above statistically sig-
nificant. Ensemble and neural network models
achieved the greatest accuracy.
Experiments have shown that further improve-
ment in the quality of models can be achieved us-
ing the feature selection method. To compare such
methods, a model of the linear method of support
vector machines was chosen, as one of the mod-
els with the least influence of the hyperparameters
random selection, and a high dependence on the
dimension of the input data.
The following algorithms were used for the se-
lection of the significant features:
Principal component analysis. The essence of
the principal component analysis (PCA) method
is a significant reduction in the data dimension.
The original matrix X is replaced by two new ma-
trices T and P, the dimension of which is less than
the number of variables (columns) of the original
matrix X [25].
Let there be a matrix of variables X of dimension
(M × N), where M is the number of samples (rows),
and N is the number of independent variables (col-
umns), which, generally, are many (N >> 1). The
PCA is a method with minimal loss of useful in-
formation, since it uses new, formal variables t
a
(a =
= 1, ..., A), which are a linear combination of the
initial variables x
n
(n = 1,…, N)
1 1 ...a a aN Nt p x p x= + + , (14)
where p
a1
— are the coefficients applied to the ini-
tial variables. With these new variables, the matrix
X is decomposed into the product of two matrices
T and P:
1
A
t t
a a
a
X TP E t p E
=
= + = +∑ . (15)
76 ISSN 0130-5395, Control systems and computers, 2018, № 4
a
b
с
Eeg analysis of person familiarity with audio-video data assessing task
ISSN 0130-5395, УСиМ, 2018, № 4 77
Fig. 4 shows partial examples of the matrix of co-
efficients applied to the initial characteristics when
the number of significant features decrease to 447.
The total size of this matrix is 447 * 1920 values.
Experiments have shown that the use of the PCA
has made it possible to increase the accuracy of the
SVM model from 55.9 to 58.2%, while reducing the
number of significant features to 447.
Non-negative matrix factorization. This method
is based on the representation of a matrix Y ∈ Rm×n
as a product of matrices W ∈ Rm×k and H ∈ Rk×n , in
which all elements of the three matrices are non-
Table 1. Accuracy and appropriate hyperparameters for different models without feature selection
Model Hyperparameters Accuracy
Logistic regression * С = 300 54,4%
Linear support vector machines* С = 1000 55,9%
Kernel support vector machines* С = 10000, γ = 0.001 57,1%
K-neighbors Classification number of neighbors = 151 49,4%
Naive Bayes method — 47,1%
Decision trees method tree depth= 5 49,4%
Random forest ensemble model* the maximum depths of trees = 2, number of features = 9 56,7%
Random forest ensemble model* the maximum depths of trees = 2, number of features = 9 56,7%
Gradient boosting decision trees
ensemble model*
the maximum depths of trees = 3, learning rate= 0.1, number of estimators = 100 57,5%
Multilayer perceptron neural net-
work model with 1 hidden layer*
number of neurons in the hidden layer = 10, α = 1 57,1%
-||- with 3 hidden layers* number of neurons in the hidden layers = [10, 10, 30], α = 0.01 58,2%
-||- with 5 hidden layers* number of neurons in the hidden layers = [20, 20, 10, 10, 20], α = 0.01 59,0%
-||- with 7 hidden layers* number of neurons in the hidden layers = [10, 10, 30, 10, 50, 30, 70], α = 0.01 60,2%
Fig. 4. The coefficients of the linear combination applied to the original characteristics: a — derived from reference point P3
and applied to components № 0-19; b — from P3 to № 200-219; c — from F8 to № 0-19; d — from F8 to № 200-219; (dark-
er areas correspond to the characteristics that have made a greater contribution to the corresponding principal component.
The names of the characteristics are formed as reference point + spectral range + the end timepoint of the segment)
d
78 ISSN 0130-5395, Control systems and computers, 2018, № 4
a
b
с
Eeg analysis of person familiarity with audio-video data assessing task
ISSN 0130-5395, УСиМ, 2018, № 4 79
negative [26]. At the same time, it is necessary to
minimize the difference between the original ma-
trix and the product of the resulting matrix:
. (16)
This method resembles the PCA method. How-
ever, if in the PCA we need to obtain the orthogonal
components explaining the maximum possible part
of data variance, then in non-negative matrix fac-
torization (NMF) we need non-negative decom-
position components and covariance coefficients.
Since the data in this study were previously nor-
malized to the range [0, 1], this condition is satis-
fied. Fig. 5 shows partial examples of the matrix of
covariance coefficients applied to the initial char-
acteristics with a decrease in the number of signifi-
cant features to 521. The total size of this matrix is
521 * 1920 values.
The process of decomposing data into a non-
negative weighted sum is especially useful for data
created as a result of combining (or overlaying) sev-
eral independent sources, which in our case is con-
sistent with the nature of the data (the total electri-
cal activity of many neurons).
Experiments have shown that the use of the
method of non-negative matrix factorization made
it possible to increase the accuracy of the SVM
model from 55.9 to 58.6%, while reducing the
number of significant features to 521.
Genetic algorithm. This method refers to heu-
ristic search algorithms, and is used to solve opti-
mization and modeling problems by sequentially
selecting, combining and varying the desired pa-
rameters using mechanisms resembling biological
evolution. In general, the application of this algo-
rithm can be divided into the following steps:
1. The choice of optimized parameters, and the
generation of the initial genome. In this experi-
ment — the genome consisted of 1923 binary genes
[X
1
, ..., X
1923
], where X
1
, X
2
, X
3
encoded one of the 8
variants of hyperparameter C from the logarithmic
sequence [0.01, 0.03, 0.1, 0.3, 1 , 3, 10, 30] + 1920
genes responsible for the use of the corresponding
feature in the model.
2. The choice of the fitness function f(X
1
, ...,
..., X
1923
). In this experiment — the accuracy func-
tion of the model for the linear SVM from hyperpa-
rameter C and the set of input features. In the case
of the same accuracy of the model, the gene that
had fewer features was considered as more fitted.
3. Cyclic selection of parameters of the function.
1.1. Generation of a “child” by mutation of the
“parent” (inversion of m random genes). The pa-
Fig. 5. The covariance coefficients applied to the initial characteristics: a — obtained from the reference point PO4 and applied
to the components № 0-19; b — from PO4 to № 200-219; с — from FC1 to №0-19; d — from FC1 to № 200-219; (darker
areas correspond to characteristics that have a higher covariance coefficient to the corresponding decomposition component.
The names of the characteristics are formed as reference point + spectral range + the end timepoint of the segment)
d
21( , )
2
f W H Y WH= −
D.S. Reshetnykov
80 ISSN 0130-5395, Control systems and computers, 2018, № 4
rameter m affects the speed of movement along the
slope of the fixture function.
1.2. The calculation of the fitness function of the
device f(X
1
, ..., X
1923
) for the resulting “child”.
1.3. Selection (selection of the most adapted in-
dividual from a descendant-ancestor pair).
1.4. Estimation of the age of the genome (the
number of iterations in which a parent genome has
the result of the fitness function better than a child
genome). In case of reaching the limit — the de-
struction of the ancestor and its replacement by a
descendant. This parameter affects the chance of the
“stuck” of the optimizing function in local minima.
1.5. If the condition for stopping the cycle is satis-
fied, then the end of the cycle, otherwise the beginning
of the cycle. Since the genetic algorithm refers to sto-
chastic optimization methods, the condition for stop-
ping is often the impossibility of finding a more adapted
individual in k iterations or in a certain time interval. In
this case, this parameter affects the total running time
of the algorithm. In this experiment, the operation
time of the algorithm was limited to one day.
The use of the genetic algorithm made it pos-
sible to increase the accuracy of the SVM model
from 55.9 to 80.7%, while reducing the number of
significant features to 478 (fig. 6).
The graphs of the achieved accuracy and the
number of significant features show that the genet-
ic algorithm quite quickly achieves high accuracy
and reduces the set of significant features to ~ 1/4
of the initial number, after which further improve-
ment slows down and becomes more random.
It is important to note that in the process of
multiple repetition of the experiment, in a rela-
tively short time (within 7200s), the genetic algo-
rithm consistently found a set of parameters for
the SVM that allows to obtain accuracy higher
than any other previously used algorithm, includ-
ing multilayer neural network models.
Conclusions
Conducted experiments on the analysis of the EEG
signal to determine familiarity with the presented
audiovisual data have shown that some of the ma-
chine learning methods do not allow achieving any
significant accuracy. So the basic models of decision
trees, naive Bayes and k-nearest neighbors did not
show significant results, which is most likely due to
the lack of clear distribution rules for features.
However, among many models without selection
of features, ensemble and neural network models
Fig. 6. Dependence of the number of significant features and the achieved accuracy of the SVM model on the total run
time of the genetic algorithm: a — model accuracy; b — number of features.
Eeg analysis of person familiarity with audio-video data assessing task
ISSN 0130-5395, УСиМ, 2018, № 4 81
REFERENCES
1. Aleksandrov Y.I., 2012. Psihofiziologicheskie zakonomernosti naucheniya i metodyi obucheniya. Psihologicheskiy
zhurnal. tom 33, #6, pp. 5—19
2. Liping Shen, Minjuan Wang and Ruimin Shen. 2013. Affective e-Learning: Using “Emotional” Data to Improve Learning in
Pervasive Learning Environment. Journal of Educational Technology & Society Vol. 12, No. 2 (April 2009), pp. 176—189
3. Hadjidimitriou, S.K.; Hadjileontiadis, L.J. EEG-based classification of music appraisal responses using time-frequency
analysis and familiarity ratings. IEEE Trans. Affect. Comput. 4, pp. 161—172.
4. Nattapong Thammasan, Koichi Moriyama, Ken-ichi Fukui, Masayuki Numao. 2017.Familiarity effects in EEG-based
emotion recognition. Brain Informatics. pp. 4:39—50
5. Rostami Shahin, Shenfield Alex, Sigurnjak Steve, Fakorede Oluwatoyin, 2015. “Evaluation of mental workload and
familiarity in human computer interaction with integrated development environments using single-channel EEG”. In:
26th Annual Workshop of PPIG, Bournemouth University, July 2015.
6. Cheng Yang, Fang An, Chen Chen, Bin Zhu, 2017. The effect of product characteristic familiarity on product recogni-
tion. IOP Conf. Series: Materials Science and Engineering, 231.
doi:10.1088/1757-899X/231/1/012016.
7. Meng-Hsien (Jenny) Lin, Samantha N.N. Cross, William J. Jones, Terry L. Childers, 2018. “Applying EEG in con-
sumer neuroscience”, European Journal of Marketing, 52 (1/2).
8. Jose Paulo Marques dos Santos, Marisa Martins, Hugo Alexandre Ferreira, Joana Ramalho, Daniela Seixas, 2016.
“Neural imprints of national brands versus own-label brands”, Journal of Product & Brand Management, 25 (2),
pp. 184—195.
9. Novikova, S.I., 2015. “Ritmyi EEG i kognitivnyie protsessyi” [Elektronnyiy resurs]. Psihologicheskaya nauka i obra-
zovanie psyedu.ru, T. 4, 1, pp. 91—108, http://psyjournals.ru/jmfp/ 2015/n1/76178.shtml> [Accessed 20 Aug. 2018].
(In Russian).
10. Kahana, M.J., 2006. “The cognitive correlates of human brain oscillations”. Journal of Neuroscience, 26 (6), pp. 1669—1672.
11. Naumov, R.A., 2010. Raspoznavanie tipov myislitelnoy deyatelnosti po EEG pri reshenii prostranstvennyih i verbalno-
logicheskih zadach. Diss. kand. biol. nauk., 28 p. (In Russian).
12. Roik, A. O., Ivanitskiy, G. A., Ivanitskiy, A. M., 2012. “Kognitivnoe prostranstvo cheloveka: sovpadenie modeley, pos-
troennyih na osnove analiza ritmov mozga i na psihometricheskih izmereniyah”. Rossiyskiy fiziologicheskiy zhurnal im.
I.M. Sechenova, 98 (11), pp. 1314—1328. (In Russian).
13. Sotnikov, P. I., 2014. Obzor metodov obrabotki signala elektroentsefalogrammyi v interfeysah mozg-kompyuter.
Inzhenernyiy vestnik, pp. 13—24. (In Russian).
14. Bureeva, N.N., 2007. “Mnogomernyiy statisticheskiy analiz s ispolzovaniem PPP “STATISTICA””. Uchebno-
metodicheskiy material po programme povyisheniya kvalifikatsii “Primenenie programmnyih sredstv v nauchnyih issle-
dovaniyah i prepodavanii matematiki i mehaniki”. Nizhniy Novgorod, 112 p. (In Russian).
have reached a significant accuracy. Neural network
models accuracy increases with an increase in the
number of the hidden layers. These results may in-
dicate that the complexity of such process as think-
ing in general, and in particular the recognition of
what had been seen, has the complex internal de-
pendencies, which can only be seen by observing
the whole process, and not its individual features.
The high result of the ensemble models is also pre-
sumably related to the flexibility of these models in
relation to non-uniformly distributed data.
Given the fact that the recognition of video-audio
images is a complex process distributed in space (over
brain regions) and time, increasing the accuracy of its
determination is possible by reducing the dimension-
ality of the data and highlighting significant features.
Experiments have shown that the choice of the
optimal (from a practical point of view) subspace
of features can be achieved in a relatively short time
using a genetic algorithm. When solving the prob-
lem posed, the genetic algorithm made it possible
to isolate the signs with the greatest information and
to increase the accuracy of the linear SVM model
from 55.9 to 80.7%.
Further improvement of the result is possible by
combining neural network models and a genetic
algorithm as a search algorithm for building the
model architecture. Strengthening the genetic algo-
rithm for selecting significant features is possible by
improving the mutation algorithms to speed up the
search for a global maximum of the accuracy func-
tion from a set of features.
D.S. Reshetnykov
82 ISSN 0130-5395, Control systems and computers, 2018, № 4
Решетников Д.С., аспірант,
Міжнародний науково-навчальний центр
інформаційних технологій і систем НАН України та МОН України,
просп. Глушкова, 40, Київ 03187, Україна,
denis.reshetnykov@gmail.com
АНАЛІЗ ЕЛЕКТРОЕНЦЕФАЛОГРАМ У ЗАДАЧІ ОЦІНКИ
СТАНУ ОЗНАЙОМЛЕННЯ УЧНЯ З АУДІО ТА ВІДЕОДАНИМИ
Вступ. Оцінка емоційного стану учнів в цілому і динамічна оцінка ознайомлення з матеріалами зокрема, дозволяє
краще оцінити засвоєння теоретичного матеріалу і швидкість оволодіння вміннями, які потребують багаторазо-
вого повторення матеріалу.
Контроль навчального процесу був би значно ефективніше, якби була можливість об’єктивно оцінити, за
сукупністю ознак, знайомство конкретного учня з представленими йому матеріалами.
Мета статті. Виконати порівняльний аналіз і експериментальне дослідження ефективності різних методів
машинного навчання для побудови моделі визначення знайомства з аудіовізуальними матеріалами, на основі
аналізу сигналу електроенцефалограм і визначити набір ознак, які найкраще класифікують даний сигнал.
Методи. Запропоновано інформаційну технологію, яка на підставі набору реальних ЕЕГ бази даних
DEAP виконує побудову, підбір гіперпараметрів і оцінку різних моделей класифікації стану ознайомлен-
ня учня з аудіовізуальними даними. Для лінійного методу опорних векторів реалізовано інформаційну
технологію відбору діагностичних ознак на підставі методу головних компонент, невід’ємної матричної
факторизації і генетичного алгоритму.
Результат. За використання запропонованої інформаційної технології підібрано параметри і отримано ре-
зультати точності для різних моделей класифікації, що дозволило порівняти такі моделі і визначити найбільш
адекватні до вирішення поставленної задачі. Застосування методів відбору ознак дозволило підвищити точ-
ність моделі лінійного методу опорних векторів з 55,9 до 80,7відсотків.
Висновок. Запропонована інформаційна технологія аналізу сигналу ЕЕГ для ознайомлення з представленими
аудіовізуальними даними показала високу ефективність ансамблевих і нейромережевих моделей в даній задачі.
Підвищення точності класифікації стану ознайомлення з поданими аудіо-відеоданими можливо шляхом знижен-
15. Ermachenko, N.S., Ermachenko, A.A., Latanov, A.V., 2011. “Desinhronizatsiya EEG na chastote alfa-ritma kak
otrazhenie protsessov zritelnogo selektivnogo vnimaniya”. Fiziologiya cheloveka, 37(6), pp. 18—27 (In Russian).
16. Naumov R. A. 2010. “Raspoznavanie tipov myislitelnoy deyatelnosti po EEG pri reshenii prostranstvennyih i verbalno-
logicheskih zadach”. Diss. kand. biol. nauk. T. 3. — #. 01.
17. Casey, B.J., Giedd, J.N., Thomas, K.M., 2000. “Structural and functional brain development and its relation to cogni-
tive development”. Biological psychology, 54 (1—3), pp. 241—257.
18. Norkin, V.I., Kayzer, M.A., 2009. “Ob effektivnosti metodov klassifikatsii, osnovannyih na minimizatsii empiricheskogo
riska”. Kibernetika i sistemnyiy analiz, 5, pp. 93—105. (In Russian).
19. Bartlett, P., Shawe-Taylor, J., 1998. Generalization performance of support vector machines and other pattern classi-
fiers. Advances in Kernel Methods. MIT Press, Cambridge, USA.
20. Voronov, I.V., Politov, E.A., Efremenko, V.M. “Obzor tipov iskustvennyih neyronnyih setey i metodov ih obucheniya”.
Elektrotehnicheskie kompleksyi i sistemyi, pp. 38—42. (In Russian).
21. Chistyakov, S.P., 2013. “Sluchaynyie lesa: obzor”. Trudyi Karelskogo nauchnogo tsentra RAN, 1, pp. 117–136. (In Russian).
22. Dyakonov, A.G., 2010. “Analiz dannyih, obuchenie po pretsedentam, logicheskie igryi, sistemyi WEKA, RapidMiner i
MatLab”: Uchebnoe posobie. M.: Izdatelskiy otdel fakulteta VMK MGU imeni M.V. Lomonosova. (In Russian).
23. Koelstra, S., Muehl, C., Soleymani, M., Lee, J.-S., Yazdani, A., Ebrahimi, T., Pun, T., Nijholt, A., Patras, I., 2012. ”DEAP: A
Database for Emotion Analysis using Physiological Signals”, IEEE Transactions on Affective Computing, 3 (1), pp. 18—31.
24. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., 2011. “Scikit-learn: Machine Learning in Python”,
JMLR, 12, pp. 2825—2830.
25. Kalinina, V.N., Solovev, V.I., Kolemaev, V.A., Shevelev, V.V., Mihalev, B.G., 2003. Vvedenie v mnogomernyiy statis-
ticheskiy analiz, 66 p. (In Russian).
26. Renaud Gaujoux et al., 2010. A flexible R package for nonnegative matrix factorization. In: BMC Bioinformatics, p. 367.
Received 12.11.2018.
Eeg analysis of person familiarity with audio-video data assessing task
ISSN 0130-5395, УСиМ, 2018, № 4 83
Решетников Д.С., аспирант,
Международный научно-учебный центр
информационных технологий и систем НАН Украины и МОН Украины,
просп. Глушкова, 40, Киев 03187, Украина,
denis.reshetnykov@gmail.com
АНАЛИЗ ЭЛЕКТРОЭНЦЕФАЛОГРАМ В ЗАДАЧЕ ОЦЕНКИ
СОСТОЯНИЯ ОЗНАКОМЛЕНИЯ УЧАЩИХСЯ С АУДИО-ВИДЕО ДАННЫМИ
Введение. Оценка эмоционального состояния учащихся в целом и динамическая оценка ознакомления с
материалами в частности, позволяет лучше оценить усвоение теоретического материала и скорость овладения
умениями, требующими многократного повторения.
Контроль учебного процесса был бы значительно эффективнее при возможности объективно оценить уровень
ознакомления конкретного учащегося с материалами по совокупности признаков.
Цель статьи. Выполнить сравнительный анализ и экспериментальное исследование эффективности
различных методов машинного обучения для построения модели определения знакомства с представленными
аудиовизуальными материалами, на основе анализа сигнала электроэнцефалограмм и определить набор
признаков, наилучшим образом классифицирующих данный сигнал.
Методы. Предложена информационная технология, которая на основании набора реальных ЭЭГ базы данных
DEAP выполнияет построение, подбор гиперпараметров и оценку различных моделей классификации состояния
ознакомления учащегося с аудио-визуальными данными. Для линейного метода опорных векторов реализована
информационная технология отбора диагностических признаков на основе метода главных компонент,
неотрицательной матричной факторизации и генетического алгоритма.
Результат. С использованием предложенной информационной технологии, подобраны параметры и получены
результаты точности для различных моделей классификации, что позволило сравнить такие модели и определить
наиболее адекватные решению поставленной задачи. Применение методов отбора признаков позволило повысить
точность модели линейного метода опорных векторов с 55,9 до 80,7 процентов.
Выводы. Предложенная информационная технология анализа сигнала ЭЭГ для определения степени
ознакомления с представленными аудиовизуальными данным показала высокую эффективность ансамблевых
и нейросетевых моделей в данной задаче. Повышение точности классификации состояния ознакомления с
представленными аудио-видео данным возможно путем снижения их размерности и выделения значимых
признаков, что экспериментально подтверждено на примере применения генетического алгоритма для отбора
признаков методом опорных векторов.
Ключевые слова: машинное обучение, генетический алгоритм, электроэнцефалограмма, набор данных DEAP,
распознавание эмоций.
ня розмірності даних і виділення значимих ознак, що експериментально підтверджено на прикладі застосування
генетичного алгоритму до відбору ознак методом опорних векторів.
Ключові слова: машинне навчання, генетичний алгоритм, електроенцефалограма, набір данних DEAP, розпізнавання
емоцій.
|