On the Hilbert problem for analytic functions in quasihyperbolic domains
We study the Hilbert boundary-value problem for analytic functions in the Jordan domains satisfying the quasi-hyperbolic boundary condition by Gehring—Martio. Assuming that the coefficients of the problem are functions of the countably bounded variation and the boundary data are measurable with r...
Gespeichert in:
Datum: | 2019 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Видавничий дім "Академперіодика" НАН України
2019
|
Schriftenreihe: | Доповіді НАН України |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/150503 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | On the Hilbert problem for analytic functions in quasihyperbolic domains / V.Ya. Gutlyanskii, V.I. Ryazanov, E. Yakubov, A.S. Yefimushkin // Доповіді Національної академії наук України. — 2019. — № 2. — С. 23-30. — Бібліогр.: 15 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-150503 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1505032019-04-09T01:25:34Z On the Hilbert problem for analytic functions in quasihyperbolic domains Gutlyanskii, V.Ya. Ryazanov, V.I. Yakubov, E. Yefimushkin, A.S. Математика We study the Hilbert boundary-value problem for analytic functions in the Jordan domains satisfying the quasi-hyperbolic boundary condition by Gehring—Martio. Assuming that the coefficients of the problem are functions of the countably bounded variation and the boundary data are measurable with respect to the logarithmic capacity, we prove the existence of solutions of the problem in terms of angular limits. As consequences, we derive the corresponding results concerning the Dirichlet, Neumann, and Poincaré boundary-value problems for harmonic functions. Досліджено граничну задачу Гільберта для аналітичних функцій в жорданових областях, які задовольняють квазігіперболічну умову Герінга Мартіо. З припущенням, що коефіцієнти задачі є функціями зліченно-обмеженої варіації і граничні дані є вимірними відносно логарифмічної ємності, доведено існування розв'язків задачі в термінах кутових границь. Як наслідки отримано відповідні результати для крайових задач Діріхле, Неймана і Пуанкаре для гармонічних функцій. Исследована краевая задача Гильберта для аналитических функций в жордановых областях, удовлетворяющих квазигиперболическому условию Геринга Мартио. С предположением, что коэффициенты задачи являются функциями счетно-ограниченной вариации, а граничные данные измеримы относительно логарифмической емкости, доказано существование решений задачи в терминах угловых пределов. В качестве следствий получены соответствующие результаты для краевых задач Дирихле, Неймана и Пуанкаре для гармонических функций. 2019 Article On the Hilbert problem for analytic functions in quasihyperbolic domains / V.Ya. Gutlyanskii, V.I. Ryazanov, E. Yakubov, A.S. Yefimushkin // Доповіді Національної академії наук України. — 2019. — № 2. — С. 23-30. — Бібліогр.: 15 назв. — англ. 1025-6415 DOI: doi.org/10.15407/dopovidi2019.02.023 http://dspace.nbuv.gov.ua/handle/123456789/150503 517.5 en Доповіді НАН України Видавничий дім "Академперіодика" НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Математика Математика |
spellingShingle |
Математика Математика Gutlyanskii, V.Ya. Ryazanov, V.I. Yakubov, E. Yefimushkin, A.S. On the Hilbert problem for analytic functions in quasihyperbolic domains Доповіді НАН України |
description |
We study the Hilbert boundary-value
problem for analytic functions in the Jordan domains satisfying the quasi-hyperbolic
boundary condition by Gehring—Martio. Assuming that the coefficients of the problem are functions of the
countably bounded variation and the boundary data are measurable with respect to the logarithmic capacity, we
prove the existence of solutions of the problem in terms of angular limits. As consequences, we derive the corresponding
results concerning the Dirichlet, Neumann, and Poincaré boundary-value
problems for harmonic functions. |
format |
Article |
author |
Gutlyanskii, V.Ya. Ryazanov, V.I. Yakubov, E. Yefimushkin, A.S. |
author_facet |
Gutlyanskii, V.Ya. Ryazanov, V.I. Yakubov, E. Yefimushkin, A.S. |
author_sort |
Gutlyanskii, V.Ya. |
title |
On the Hilbert problem for analytic functions in quasihyperbolic domains |
title_short |
On the Hilbert problem for analytic functions in quasihyperbolic domains |
title_full |
On the Hilbert problem for analytic functions in quasihyperbolic domains |
title_fullStr |
On the Hilbert problem for analytic functions in quasihyperbolic domains |
title_full_unstemmed |
On the Hilbert problem for analytic functions in quasihyperbolic domains |
title_sort |
on the hilbert problem for analytic functions in quasihyperbolic domains |
publisher |
Видавничий дім "Академперіодика" НАН України |
publishDate |
2019 |
topic_facet |
Математика |
url |
http://dspace.nbuv.gov.ua/handle/123456789/150503 |
citation_txt |
On the Hilbert problem for analytic functions in quasihyperbolic domains / V.Ya. Gutlyanskii, V.I. Ryazanov, E. Yakubov, A.S. Yefimushkin // Доповіді Національної академії наук України. — 2019. — № 2. — С. 23-30. — Бібліогр.: 15 назв. — англ. |
series |
Доповіді НАН України |
work_keys_str_mv |
AT gutlyanskiivya onthehilbertproblemforanalyticfunctionsinquasihyperbolicdomains AT ryazanovvi onthehilbertproblemforanalyticfunctionsinquasihyperbolicdomains AT yakubove onthehilbertproblemforanalyticfunctionsinquasihyperbolicdomains AT yefimushkinas onthehilbertproblemforanalyticfunctionsinquasihyperbolicdomains |
first_indexed |
2025-07-13T00:15:07Z |
last_indexed |
2025-07-13T00:15:07Z |
_version_ |
1837488659356450816 |
fulltext |
23ISSN 10256415. Допов. Нац. акад. наук Укр. 2019. № 2
© V.Ya. Gutlyanskii, V.I. Ryazanov, E. Yakubov, A.S. Yefimushkin, 2019
1. Introduction. D. Hilbert studied the boundaryvalue problem formulated as follows: To find
an analytic function ( )f z in a domain D bounded by a rectifiable Jordan contour C that satis
fies the boundary condition
lim Re{ ( ) ( )} ( )
z
f z C
→ς
λ ζ = ϕ ζ ∀ζ ∈ , (1)
where both the coefficient λ and the boundary data ϕ of the problem are continuously differen
tiable with respect to the natural parameter s on C . Moreover, it was assumed by Hilbert that
0λ ≠ everywhere on C . The latter allows us, without loss of generality, to consider that | | 1λ ≡
on C . In this case, the quantity Re { }fλ from the left in (1) means a projection of f onto the
direction λ interpreted as vectors in 2
¡ .
Historic surveys in the subject can be found in the recent papers [13]. Here, we substantially
weaken the regularity conditions on the functions λ and ϕ in the boundary condition (1) and on
the boundary C of the domain D . On the one hand, we will deal with the coefficients λ of coun
tably bounded variation and the boundary data ϕ which are measurable with respect to the loga
doi: https://doi.org/10.15407/dopovidi2019.02.023
UDC 517.5
V.Ya. Gutlyanskii 1, V.I. Ryazanov 1,2,
E. Yakubov 3, A.S. Yefimushkin 1
1 Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Slovyansk
2 Bogdan Khmelnytsky National University of Cherkasy
3 Holon Institute of Technology, Israel
Email: vgutlyanskii@gmail.com, vl.ryazanov1@gmail.com, yakubov@hit.ac.il,
eduardyakubov@gmail.com, a.yefimushkin@gmail.com
On the Hilbert problem for analytic functions
in quasihyperbolic domains
Presented by Corresponding Member of the NAS of Ukraine V.Ya. Gutlyanskii
We study the Hilbert boundaryvalue problem for analytic functions in the Jordan domains satisfying the quasi
hyperbolic boundary condition by Gehring—Martio. Assuming that the coefficients of the problem are functions of the
countably bounded variation and the boundary data are measurable with respect to the logarithmic capacity, we
prove the existence of solutions of the problem in terms of angular limits. As consequences, we derive the correspond
ing results concerning the Dirichlet, Neumann, and Poincaré boundaryvalue problems for harmonic functions.
Keywords: Hilbert, Dirichlet, Neumann, and Poincaré boundaryvalue problems, analytic and harmonic functions,
quasihyperbolic boundary condition, logarithmic capacity, angular limits.
24 ISSN 10256415. Dopov. Nac. akad. nauk Ukr. 2019. № 2
V.Ya. Gutlyanskii, V.I. Ryazanov, E. Yakubov, A.S. Yefimushkin
rithmic capacity. On the other hand, the fundamental Becker—Pommerenke result in [4] allows us
to study the Hilbert boundaryvalue problem in domains D with the quasihyperbolic boundary
condition introduced in [5].
Recall that the quasihyperbolic distance between points z and 0z in a domain D ⊂£ is the
quantity 0( , ) : inf / ( , ) ,Dk z z ds d D
γ
γ
= ζ ∂∫ where ( , )d Dζ ∂ denotes the Euclidean distance from
the point Dζ ∈ to D∂ , and the infimum is taken over all rectifiable curves γ joining the points z
and 0z in D , see [6]. Further, it is said that a domain D satisfies the quasihyperbolic boundary
condition if, for constants a and b and a point 0z D∈ ,
0
0
( , )
( , ) ln .
( , )D
d z D
k z z a b z D
d z D
∂
+ ∀ ∈
∂
� (2)
Let D be a Jordan domain in £ such that it has a tangent at a point Dζ ∈∂ A path in D
terminating at ζ is called nontangential if its part in a neighborhood of ζ lies inside of an angle
in D with the vertex at ζ . The limit along all nontangential paths at ζ is called angular at the
point. The latter notion is a standard tool for the study of the boundary behavior of analytic and
harmonic functions, see, e.g., [79]. Further, the Hilbert boundary condition (1) will be under
stood precisely in the sense of angular limit.
The notion of the logarithmic capacity is the important tool for our research. Dealing with
measurable boundary data functions ( )ϕ ζ with respect to the logarithmic capacity, see defini
tions in [3], we will use the abbreviation q.e. ( quasieverywhere) on a set ,E ⊂£ if a property holds
for all Eζ ∈ except its subset of zero logarithmic capacity [10].
2. Some definitions and preliminary remarks. Later on, D denotes the unit disk { :| | 1}z z∈ <£ .
Given a Jordan domain D in £ , we call : Dλ ∂ →£ a function of bounded variation, write
( )Dλ ∈ ∂BV , if
1
1
( ) : sup | ( ) ( ) |
j k
j j
j
V D
=
λ +
=
∂ = λ ζ − λ ζ < ∞∑ (3)
where the supremum is taken over all finite collections of points j Dζ ∈∂ , 1, ,j k= … , with the
cyclic order meaning that jζ lies between 1j+ζ and 1j−ζ for every 1, ,j k= … . Here, we assume
that 1 1 0k+ζ = ζ = ζ . The quantity ( )V Dλ ∂ is called the variation of the function λ .
Now, we call : Dλ ∂ →£ a function of the countably bounded variation, write ( )Dλ ∈ ∂CBV ,
if there is a countable collection of mutually disjoint arcs nγ of D∂ , 1, 2,n = … on each of which
the restriction of λ is of bounded variation nV , sup n
n
V < ∞ , and the set \ nD∂ ∪γ has loga
rithmic capacity zero. In particular, the latter holds true if \ nD∂ ∪γ is countable. It is clear
that such functions can be singular enough.
The following statement was proved as Proposition 5.1 in paper [3], where the function λα
has been called by a function of the argument of λ .
Proposition 1. For every function :λ ∂ → ∂D D of the class ( )∂DBV , there is a function :λα ∂ →¡D
of the class ( )∂DBV with 3 / 2V Vα λλ
π� such that ( ) exp{ ( )}i λλ ζ = α ζ for all ζ ∈∂D .
Given a Jordan curve Γ ⊂£ , ( )cL∞ Γ denotes the class of all functions :α Γ →¡ which are
measurable with respect to the logarithmic capacity and q.e. bounded.
25ISSN 10256415. Допов. Нац. акад. наук Укр. 2019. № 2
On the Hilbert problem for analytic functions in quasihyperbolic domains
Proposition 2. For every function :λ ∂ → ∂D D in the class ( )∂DCBV , there is a function
:λα ∂ →¡D in the class ( ) ( )cL∞ ∂ ∩ ∂D DCBV such that
( ) exp{ ( )} . . i q e onλλ ζ = α ζ ∂D . (4)
Proof. Denote, by nλ , the function on ∂D that is equal to λ on nγ and to 1 outside of nγ . Let nα
correspond to nλ by Proposition 1. Then its variation * 3 /2n nV V π� . With no loss of generality,
we may assume that 0nα ≡ outside of nγ . Set
1
n
n
∞
=
α = α∑ . Then ( )α∈ ∂DCBV and ( ) exp{ ( )}iλ ζ = α ζ
q.e. on ∂D Applying the corresponding shifts (divisible 2π ), we may change nα on nγ through
n
∗α with *
nα π� at the middle point of nγ . Then it is clear that the new function ( )∗α ∈ ∂DCBV
and ( ) exp{ ( )}i ∗λ ζ = α ζ q.e. on ∂D and, moreover, 3 /2nV∗α π + π� on every nγ , i.e ∗α is
bounded outside of the set \ n∂ ∪γD . In addition, by construction, the function ∗α is conti
nuous q.e. on ∂D Hence, ( )cL∗ ∞α ∈ ∂D .
We say that a Jordan curve Γ in £ is almost smooth if Γ has a tangent quasieverywhere.
Here, we say that a straight line L in £ is tangent to Γ at a point 0z ∈Γ if
00
( , )
0lim sup
| |,z z
dist z L
z zz→
=
−∈Γ
. (5)
In particular, Γ is almost smooth if Γ has a tangent at all its points except a countable set.
The nature of such Jordan curves Γ is complicated enough because the countable set can be eve
rywhere dense in Γ .
Remark 1. By Corollary of Theorem 1 in [4], a conformal mapping of a Jordan domain D in
£ with the quasihyperbolic boundary condition onto the unit disk D as well as its inverse are
Hölder continuous in the closure of D and D , respectively. Since the logarithmic capacity of a
set coincides with its transfinite diameter, these mappings keep the sets of the logarithmic capa
city zero on the boundaries of D and D . Consequently, by Remark 2.1 in [3], such mappings
also keep boundary functions which are measurable with respect to the logarithmic capacity.
These facts are key for the research of the boundaryvalue problems in the given domains.
3. Correlation of conjugate harmonic functions. The following statement was first proven
for the case of bounded variation in [3] as Theorem 5.1. Here, we give an alternative proof of this
significant fact and extend it to the case of countably bounded variation.
Lemma 1. Let :α ∂ →¡D be in the class ( ) ( )cL∞ ∂ ∩ ∂D DCBV , let :u →¡D be a bounded har
monic function such that
lim ( ) ( )
z
u z
→ς
= α ζ (6)
at every point of continuity of α , and let ν be its conjugate harmonic function. Then ν has the
angular limit
lim ( ) ( ) . .
z
z q e on
→ς
ν = β ζ ∂D , (7)
where :β ∂ →¡D is measurable with respect to the logarithmic capacity.
26 ISSN 10256415. Dopov. Nac. akad. nauk Ukr. 2019. № 2
V.Ya. Gutlyanskii, V.I. Ryazanov, E. Yakubov, A.S. Yefimushkin
Proof. Let us start from the case ( )α∈ ∂DBV . In this case, α has at most a countable set S
of points of discontinuity and, consequently, S is of zero logarithmic capacity. Hence, by the gen
eralized maximum principle, see the point 115 in [11], such a function u is unique and, thus, u
can be represented as the Poisson integral of the function α , see Theorem I.D.2.2 in [8],
2
2
1 1
( ) ( )
2 1 2 cos( )
i itr
u re e dt
r t r
π
ϑ
−π
−= α
π − ϑ − +∫ . (8)
Here, the Poisson kernel is a real part of the analytic function ( ) / ( )z zζ + ζ − , iteζ = , iz re ϑ= ,
and, by the Weierstrass theorem, see Theorem 1.1.1 in [12], the Schwartz integral
1
( ) : ( )
2
z d
f z
i z∂
ζ + ζ= α ζ
π ζ − ζ∫
D
(9)
gives the analytic function f u iv= + in D with Reu f= , Imv f= , and
1 ( )
( ) ( )
2 1
it
it
it it
e z z F t
f z e dt C dt
e z e z
π π
−
−π −π
+= α = +
π π− −∫ ∫ , (10)
where ( ) ( )it itF t e e−= α and
1
( )
2
itC e dt
π
−π
= α
π ∫ . By Theorem 2(c) in [13], the function ( )f z has
angular limits ( )f ζ as z → ζ q.e. on ∂D , because the function F is of bounded variation. It re
mains to note that ( ) lim ( )n
n
f f
→∞
ζ = ζ , where ( ) ( )n nf f rζ = ζ , for an arbitrary sequence 1 0nr → −
as n → ∞ q.e. on ∂D . Thus, ( )f ζ is measurable with respect to the logarithmic capacity, be
cause the functions ( )nf ζ are so as continuous functions on ∂D , see 2.3.10 in [14].
Now, let ( )α∈ ∂DCBV . Then its set of points of discontinuity is at most of zero logarithmic
capacity. Hence, again by the generalized maximum principle, the bounded function u satisfying
(6) is unique. Moreover, ( )cL∞α∈ ∂D and, consequently, u can be represented by the Poisson in
tegral (8), and the Schwartz integral (9) gives the analytic function f u iv= + in D , where
2
1 2 sin( )
( ) ( )
2 1 2 cos( )
i itr t
v re e dt
r t r
π
ϑ
−π
ϑ −= α
π − ϑ − +∫ . (11)
Let us apply the linearity of the integral operator (11). Namely, denote, by χ , the character
istic function of an arc ∗γ of ∂D , where α is of bounded variation from the definition of CBV .
Setting ∗α = αχ and 0 ∗α = α − α , we have 0∗α = α + α . Then 0∗ν = ν + ν where ∗ν and 0ν corre
spond to ∗α and 0α by formula (11). By the first item of the proof, there exists the angular limit
* *( ) ( )lim
z
v z
→ζ
= β ζ q.e. on ∂D , where :∗β ∂ →¡D is a measurable function with respect to the
logarithmic capacity. Moreover, it is evident from formula (11) that 0 0( ) ( )v z → β ζ as z → ζ for
all ∗ζ ∈ γ , where 0 : ∗β γ →¡ is continuous on ∗γ . Thus, setting 0∗β = β +β on ∗γ , we obtain the
conclusion of Lemma 1 because the collection of such arcs ∗γ is countable, and the completion of
this collection on ∂D has zero logarithmic capacity.
27ISSN 10256415. Допов. Нац. акад. наук Укр. 2019. № 2
On the Hilbert problem for analytic functions in quasihyperbolic domains
4. The Hilbert problem for analytic functions.
Theorem 1. Let :λ ∂ → ∂D D be in the class ( )∂DCBV and :ϕ ∂ →¡D be measurable with re
spect to the logarithmic capacity. Then there is an analytic function :f →£D with the angular limit
lim Re[ ( ) ( )] ( ) . .
z
f z q e on
→ς
λ ζ = ϕ ζ ∂D . (12)
Proof. By Proposition 2, the function ( ) ( )cL∞
λα ∈ ∂ ∩ ∂D DCBV . Therefore,
1
( ) : ( ) ,
2
z d
g z z
i zλ
∂
+ ζ ζ= α ζ ∈
π − ζ ζ∫
D
D ,
is an analytic function with ( ) Re ( ) ( )u z g z λ= → α ζ as z → ζ for every ζ ∈∂D except a set of
the discontinuity points for the function λα , which has zero logarithmic capacity, see Corolla
ry IX.1.1 in [12] and Theorem I.D.2.2 in [8]. Note that the function ( ) exp{ ( )}A z ig z= is also
ana lytic. By Lemma 1, there is a function :β ∂ →¡D that has the angular limit ( ) Im ( ) ( )z g zν = → β ζ
( ) Im ( ) ( )z g zν = → β ζ as z → ζ q.e. on ∂D and β is measurable with respect to the logarithmic capacity. Thus,
by Corollary 4.1 in [3], there exists an analytic function :B →£D that has the angular limit
( ) Re ( ) ( )exp{ ( )}U z B z= → ϕ ζ β ζ as z → ζ q.e. on ∂D Finally, an elementary computation shows
that the desired function has the form f AB= .
Theorem 2. Let D be a Jordan domain with the quasihyperbolic boundary condition, let D∂ have
a tangent q.e., let : , | ( ) | 1Dλ ∂ → λ ζ ≡£ , be in ( )D∂CBV , and let : Dϕ ∂ →¡ be measurable with
respect to the logarithmic capacity. Then there is an analytic function :f D →£ with the angular limit
lim Re[ ( ) ( )] ( ) . .
z
f z q e on D
→ς
λ ζ = ϕ ζ ∂ (13)
Proof. Let g be a conformal mapping of D onto D that exists by the Riemann mapping
theorem, see Theorem II.2.1 in [12], and by the Caratheodory theorem, see Theorem II.3.4 in [12],
g be extended to a homeomorphism g% of D onto D . By Corollary of Theorem 1 in [4], * : | Dg g ∂= %
and its inverse function are Hölder continuous. Then 1
*: ( )g−Λ = λ ∈ ∂o DCBV and 1
*: g−Φ = ϕo is
measurable with respect to the logarithmic capacity by Remark 1. Thus, by Theorem 1, there is an
analytic function :A →£D that has the angular limit
lim Re{ ( ) ( )} ( ) . . A q e on
ω→η
Λ η ω = Φ η ∂D . (14)
Let us consider the analytic function :f A g= o and show that f is desired. Indeed, by
the Lindelöf theorem, see Theorem II.C.2 in [8], if D∂ has a tangent at a point ζ , then
arg[ ( ) ( )] arg[ ] constg g z zζ − − ζ − → as z → ζ . In other words, the images under the conformal
mapping g of sectors in D with a vertex at ζ is asymptotically the same as sectors in D with a
vertex at ( )w g= ζ . Consequently, nontangential paths in D are transformed under g into non
tangential paths in D and inversely q.e. on D∂ and ∂D respectively, because D is almost smooth
and g∗ and 1g−
∗ keep sets of logarithmic capacity zero. Thus, (14) implies the existence of the
angular limit (13) q.e. on D∂ .
28 ISSN 10256415. Dopov. Nac. akad. nauk Ukr. 2019. № 2
V.Ya. Gutlyanskii, V.I. Ryazanov, E. Yakubov, A.S. Yefimushkin
5. On Dirichlet, Neumann, and Poincaré problems. We reduce these boundaryvalue prob
lems for harmonic functions to suitable Hilbert problems for analytic functions studied above.
Corollary 1. Let D be a Jordan domain with the quasihyperbolic boundary condition and let
D∂ have a tangent q.e. Suppose : Dϕ ∂ →¡ is measurable with respect to the logarithmic capacity.
Then there exists a harmonic function :u D →£ that has the angular limit
lim ( ) ( ) . .
z
u z q e on D
→ς
= ϕ ζ ∂ . (15)
It is well known that the Neumann problem, in general, has no classical solution. The neces
sary condition of solvability is that the integral of the function ϕ over ∂D is equal to zero [15].
Theorem 3. Let D be a Jordan domain with the quasihyperbolic boundary condition and let
D∂ have a tangent q.e. Suppose that : , | ( ) | 1Dν ∂ → ν ζ ≡£ , is in the class CBV and : Dϕ ∂ →¡ is
measurable with respect to the logarithmic capacity. Then there exists a harmonic function :u D →¡
with the angular limit
lim ( ) . .
z
u
q e on D
→ς
∂ = ϕ ζ ∂
∂ν
. (16)
Proof. Indeed, by Theorem 2, there exists an analytic function :f D →£ that has the an
gular limit
lim Re[ ( ) ( )] ( )
z
f z
→ς
ν ζ = ϕ ζ (17)
q.e. on D∂ . Note that an indefinite integral F of f in D is also an analytic function and, cor
respondingly, the harmonic functions Re u F= and Im v F= satisfy the Cauchy—Riemann sys
tem x yv u= − and y xv u= . Hence x x x x yf F F u iv u iu u′= = = + = − = ∇ where x yu u iu∇ = + is
the gradient of the function u in the complex form. Thus, (16) follows from (17), i.e. u is the
de sired harmonic function, because its directional derivative Re Re ,
u
u u u
∂ = ν∇ = ν∇ = 〈ν ∇ 〉
∂ν
is
the scalar product of ν and the gradient u∇ .
Corollary 2. Let D be a Jordan domain in C with the quasihyperbolic boundary condition and
let the unit interior normal ( )n ζ to the boundary D∂ be in the class CBV . Suppose that : Dϕ ∂ →¡
is measurable with respect to the logarithmic capacity. Then one can find a harmonic function
:u D →£ such that q.e. on D∂ there exist:
1) the finite limit along the normal ( )n ζ
( ) : lim ( )
z
u u z
→ς
ζ = ,
2) the normal derivative
0
( ) ( )
( ) : lim ( )
t
u u t n u
n t→
∂ ζ + − ζζ = = ϕ ζ
∂
,
3) the angular limit
lim ( ) ( )
z
u u
z
n n→ς
∂ ∂= = ζ
∂ ∂
29ISSN 10256415. Допов. Нац. акад. наук Укр. 2019. № 2
On the Hilbert problem for analytic functions in quasihyperbolic domains
REFERENCES
1. Gutlyanskii, V. Ya. & Ryazanov, V. I. (2017). On recent advances in boundaryvalue problems in the plane.
J. Math. Sci., 221, No. 5, pp. 638670. doi: https://doi.org/10.1007/s109580173257z
2. Gutlyanskii, V., Ryazanov, V. & Yefimushkin, A. (2016). On the boundaryvalue problems for quasiconformal
functions in the plane. J. Math. Sci., 214, No. 2, pp. 200219. doi: https://doi.org/10.1007/s10958016
27692
3. Efimushkin, A. S. & Ryazanov, V. I. (2015). On the RiemannHilbert problem for the Beltrami equations in
quasidisks. J. Math. Sci., 211, No. 5, pp. 646659. doi: https://doi.org/10.1007/s1095801526210
4. Becker, J. & Pommerenke, Ch. (1982). Hölder continuity of conformal mappings and nonquasiconformal
Jordan curves. Comment. Math. Helv., 57, No. 2, pp. 221225. doi: https://doi.org/10.1007/BF02565858
5. Gehring, F. W. & Martio, O. (1985). Lipschitz classes and quasiconformal mappings. Ann. Acad. Sci. Fenn.
Ser. A. I. Math., 10, pp. 203219.
6. Gehring, F. W. & Palka, B. P. (1976). Quasiconformally homogeneous domains. J. Analyse Math., 30, pp. 172
199. doi: https://doi.org/10.1007/bf02786713
7. Duren, P. L. (1970). Theory of Hp spaces. Pure and Applied Mathematics, Vol. 38. New York: Academic
Press.
8. Koosis, P. (1998). Introduction to Hp spaces. Cambridge Tracts in Mathematics, Vol.115. Cambridge:
Cambridge Univ. Press.
9. Pommerenke, Ch. (1992). Boundary behaviour of conformal maps. Grundlehren der Mathematischen
Wissenschaften, Vol. 299. Berlin: Springer.
10. Landkof, N. S. (1972). Foundations of modern potential theory. Die Grundlehren der mathematischen
Wissenschaften, Vol. 180. New York: Springer.
11. Nevanlinna, R. (1944). Eindeutige analytische Funktionen. Michigan: Ann Arbor.
12. Goluzin, G. M. (1969). Geometric theory of functions of a complex variable. Translations of Mathematical
Monographs, Vol. 26. Providence, R.I.: American Mathematical Society.
13. Twomey, J. B. (1988). Tangential boundary behaviour of the Cauchy integral. J. London Math. Soc. (2), 37,
No. 3, pp. 447454. doi: https://doi.org/10.1112/jlms/s237.3.447
14. Federer, H. (1969). Geometric Measure Theory. Berlin: Springer.
15. Mikhlin, S. G. (1978). Partielle differentialgleichungen in der mathematischen physik. Mathematische
Lehrbücher und Monographien, Bd. 30. Berlin: Akademie.
Received 10.12.2018
В.Я. Гутлянський 1, В.І. Рязанов 1,2,
E. Якубов 3, А.С. Єфімушкін 1
1 Інститут прикладної математики і механіки НАН України, Слов’янськ
2 Черкаський національний університет ім. Богдана Хмельницького
3 Холонський інститут технологій, Ізраїль
Email: vgutlyanskii@gmail.com, vl.ryazanov1@gmail.com, yakubov@hit.ac.il,
eduardyakubov@gmail.com, a.yefimushkin@gmail.com
ПРО ЗАДАЧУ ГІЛЬБЕРТА ДЛЯ АНАЛІТИЧНИХ ФУНКЦІЙ
У КВАЗІГІПЕРБОЛІЧНИХ ОБЛАСТЯХ
Досліджено граничну задачу Гільберта для аналітичних функцій в жорданових областях, які задоволь
няють квазігіперболічну умову Герінга—Мартіо. З припущенням, що коефіцієнти задачі є функціями
зліченнообмеженої варіації і граничні дані є вимірними відносно логарифмічної ємності, доведено іс
нування розв’язків задачі в термінах кутових границь. Як наслідки отримано відповідні результати для
крайових задач Діріхле, Неймана і Пуанкаре для гармонічних функцій.
Ключові слова: крайові задачі Гільберта, Діріхле, Неймана і Пуанкаре, аналітичні і гармонічні функції,
квазігіперболічна гранична умова, логарифмічна ємність, кутова границя.
30 ISSN 10256415. Dopov. Nac. akad. nauk Ukr. 2019. № 2
V.Ya. Gutlyanskii, V.I. Ryazanov, E. Yakubov, A.S. Yefimushkin
В.Я. Гутлянский 1, В.И. Рязанов 1,2,
Э. Якубов 3, А.C. Ефимушкин 1
1 Институт прикладной математики и механики НАН Украины, Славянск
2 Черкасский национальный университет им. Богдана Хмельницкого
3 Холонский институт технологий, Израиль
Email: vgutlyanskii@gmail.com, vl.ryazanov1@gmail.com, yakubov@hit.ac.il,
eduardyakubov@gmail.com, a.yefimushkin@gmail.com
О ЗАДАЧЕ ГИЛЬБЕРТА ДЛЯ АНАЛИТИЧЕСКИХ ФУНКЦИЙ
В КВАЗИГИПЕРБОЛИЧЕСКИХ ОБЛАСТЯХ
Исследована краевая задача Гильберта для аналитических функций в жордановых областях, удовле
т воряющих квазигиперболическому условию Геринга—Мартио. С предположением, что коэффициенты
задачи являются функциями счетноограниченной вариации, а граничные данные измеримы относитель
но логарифмической емкости, доказано существование решений задачи в терминах угловых пределов.
В качестве следствий получены соответствующие результаты для краевых задач Дирихле, Неймана и
Пуанкаре для гармонических функций.
Ключевые слова: краевые задачи Гильберта, Дирихле, Неймана и Пуанкаре, аналитические и гармони
ческие функции, квазигиперболическое краевое условие, логарифмическая емкость, угловой предел.
|