Martin’s Kinetic Mean-Field Model Revisited—Frequency Noise Approach versus Monte Carlo

Development of the non-linear kinetic mean-field model suggested by George Martin in 1990 is discussed. Its steady-state limit is shown to coincide with Khachaturyan’s model. It is proved rigorously that Martin’s model and its 3DD version always provide decrease of free energy and are unable to mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Gusak, A., Zaporozhets, T.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут металофізики ім. Г.В. Курдюмова НАН України 2018
Schriftenreihe:Металлофизика и новейшие технологии
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/151873
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Martin’s Kinetic Mean-Field Model Revisited—Frequency Noise Approach versus Monte Carlo / A. Gusak, T. Zaporozhets // Металлофизика и новейшие технологии. — 2018. — Т. 40, № 11. — С. 1415-1435. — Бібліогр.: 26 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-151873
record_format dspace
spelling irk-123456789-1518732019-05-26T01:25:15Z Martin’s Kinetic Mean-Field Model Revisited—Frequency Noise Approach versus Monte Carlo Gusak, A. Zaporozhets, T. Фазовые превращения Development of the non-linear kinetic mean-field model suggested by George Martin in 1990 is discussed. Its steady-state limit is shown to coincide with Khachaturyan’s model. It is proved rigorously that Martin’s model and its 3DD version always provide decrease of free energy and are unable to model any overcoming of free-energy barrier, including nucleation. To enable nucleation processes within the mean-field models, the introduction of noise is necessary. Contrary to common way of noise introduction (noise of concentration), we introduce the noise of jump frequencies as a basic reason of fluctuations. The new method is called as Stochastic Kinetic Mean Field (SKMF). In this paper, we investigate and compare the dispersion and spatial correlations of concentration fluctuations by three methods—direct Monte Carlo simulation, numeric simulation by SKMF method, and analytic approximation within the scope of SKMF. Comparison confirms the correspondence of frequency noise to the averaging over finite number of Monte Carlo runs (over finite number of copies of the canonical ensemble). Предложено развитие нелинейной кинетической среднеполевой модели Жоржа Мартана 1990 года. Показано, что в приближении квазистационарности она соответствует модели Хачатуряна. Строго доказано, что модель Мартана и её 3DD-версия всегда обеспечивают уменьшение свободной энергии и не позволяют моделировать преодоление барьера свободной энергии вместе с зародышеобразованием. Для реализации процессов зародышеобразования в среднеполевых моделях необходимо вводить шум. В отличие от распространённого способа введения шума (как шума концентрации), мы вводим шум частоты обменов местами посредством скачков как основную причину флуктуаций. Новый метод называется SKMF (Stochastic Kinetic Mean Field). В этой работе исследуются и сравниваются дисперсия и пространственные корреляции флюктуаций концентрации, полученные с помощью трёх методов — прямого моделирования методом Монте-Карло, численного моделирования по методу SKMF, аналитического приближения в рамках SKMF. Сравнение этих методов подтверждает соответствие определённой амплитуды шума частоты усреднению по соответствующему конечному количеству Монте-Карло-запусков (по конечному числу копий канонического ансамбля). Запропоновано розвиток нелінійного кінетичного середньопольового моделю Жоржа Мартана 1990 року. Показано, що у наближенні квазистаціонарности він відповідає Хачатуряновому моделю. Строго доведено, що Мартанів модель та його 3DD-версія завжди забезпечують зменшення вільної енергії та не уможливлюють моделювати подолання бар’єру вільної енергії разом з зародкуванням. Для реалізації процесів зародкування в середньо-польових моделях необхідно вводити шум. На відміну від поширеного способу введення шуму (як шуму концентрації), ми вводимо шум частоти обмінів місцями через стрибки як основну причину флюктуацій. Нова метода називається SKMF (Stochastic Kinetic Mean Field). У цій роботі досліджуються та порівнюються дисперсія та просторові кореляції флюктуацій концентрації за допомогою трьох метод — прямого моделювання за методою Монте-Карло, чисельного моделювання за методою SKMF й аналітичного наближення в рамках SKMF. Порівняння цих метод підтверджує відповідність певної амплітуди шуму частот усередненню по відповідній скінченній кількості Монте-Карло-запусків (по скінченній кількості копій канонічного ансамблю). 2018 Article Martin’s Kinetic Mean-Field Model Revisited—Frequency Noise Approach versus Monte Carlo / A. Gusak, T. Zaporozhets // Металлофизика и новейшие технологии. — 2018. — Т. 40, № 11. — С. 1415-1435. — Бібліогр.: 26 назв. — англ. 1024-1809 DOI: 10.15407/mfint.40.11.1415 PACS: 05.40.Ca, 61.72.Bb, 64.60.Cn, 64.60.De, 66.30.Ny, 66.30.Pa, 81.30.Hd http://dspace.nbuv.gov.ua/handle/123456789/151873 en Металлофизика и новейшие технологии Інститут металофізики ім. Г.В. Курдюмова НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Фазовые превращения
Фазовые превращения
spellingShingle Фазовые превращения
Фазовые превращения
Gusak, A.
Zaporozhets, T.
Martin’s Kinetic Mean-Field Model Revisited—Frequency Noise Approach versus Monte Carlo
Металлофизика и новейшие технологии
description Development of the non-linear kinetic mean-field model suggested by George Martin in 1990 is discussed. Its steady-state limit is shown to coincide with Khachaturyan’s model. It is proved rigorously that Martin’s model and its 3DD version always provide decrease of free energy and are unable to model any overcoming of free-energy barrier, including nucleation. To enable nucleation processes within the mean-field models, the introduction of noise is necessary. Contrary to common way of noise introduction (noise of concentration), we introduce the noise of jump frequencies as a basic reason of fluctuations. The new method is called as Stochastic Kinetic Mean Field (SKMF). In this paper, we investigate and compare the dispersion and spatial correlations of concentration fluctuations by three methods—direct Monte Carlo simulation, numeric simulation by SKMF method, and analytic approximation within the scope of SKMF. Comparison confirms the correspondence of frequency noise to the averaging over finite number of Monte Carlo runs (over finite number of copies of the canonical ensemble).
format Article
author Gusak, A.
Zaporozhets, T.
author_facet Gusak, A.
Zaporozhets, T.
author_sort Gusak, A.
title Martin’s Kinetic Mean-Field Model Revisited—Frequency Noise Approach versus Monte Carlo
title_short Martin’s Kinetic Mean-Field Model Revisited—Frequency Noise Approach versus Monte Carlo
title_full Martin’s Kinetic Mean-Field Model Revisited—Frequency Noise Approach versus Monte Carlo
title_fullStr Martin’s Kinetic Mean-Field Model Revisited—Frequency Noise Approach versus Monte Carlo
title_full_unstemmed Martin’s Kinetic Mean-Field Model Revisited—Frequency Noise Approach versus Monte Carlo
title_sort martin’s kinetic mean-field model revisited—frequency noise approach versus monte carlo
publisher Інститут металофізики ім. Г.В. Курдюмова НАН України
publishDate 2018
topic_facet Фазовые превращения
url http://dspace.nbuv.gov.ua/handle/123456789/151873
citation_txt Martin’s Kinetic Mean-Field Model Revisited—Frequency Noise Approach versus Monte Carlo / A. Gusak, T. Zaporozhets // Металлофизика и новейшие технологии. — 2018. — Т. 40, № 11. — С. 1415-1435. — Бібліогр.: 26 назв. — англ.
series Металлофизика и новейшие технологии
work_keys_str_mv AT gusaka martinskineticmeanfieldmodelrevisitedfrequencynoiseapproachversusmontecarlo
AT zaporozhetst martinskineticmeanfieldmodelrevisitedfrequencynoiseapproachversusmontecarlo
first_indexed 2025-07-13T01:44:28Z
last_indexed 2025-07-13T01:44:28Z
_version_ 1837494253461176320
fulltext ФАЗОВЫЕ ПРЕВРАЩЕНИЯ PACS numbers: 05.40.Ca, 61.72.Bb, 64.60.Cn, 64.60.De, 66.30.Ny, 66.30.Pa, 81.30.Hd Martin’s Kinetic Mean-Field Model Revisited—Frequency Noise Approach versus Monte Carlo Andriy Gusak and Tetiana Zaporozhets Bohdan Khmelnytsky National University of Cherkasy, 81 Shevchenko Blvd., 18031 Cherkassy, Ukraine Development of the non-linear kinetic mean-field model suggested by George Martin in 1990 is discussed. Its steady-state limit is shown to coincide with Khachaturyan’s model. It is proved rigorously that Martin’s model and its 3D version always provide decrease of free energy and are unable to model any overcoming of free-energy barrier, including nucleation. To enable nu- cleation processes within the mean-field models, the introduction of noise is necessary. Contrary to common way of noise introduction (noise of concen- tration), we introduce the noise of jump frequencies as a basic reason of fluc- tuations. The new method is called as Stochastic Kinetic Mean Field (SKMF). In this paper, we investigate and compare the dispersion and spatial correla- tions of concentration fluctuations by three methods—direct Monte Carlo simulation, numeric simulation by SKMF method, and analytic approxima- tion within the scope of SKMF. Comparison confirms the correspondence of frequency noise to the averaging over finite number of Monte Carlo runs (over finite number of copies of the canonical ensemble). Key words: kinetics, mean-field approximation, diffusion, noise, fluctua- tion, correlation, probability. Запропоновано розвиток нелінійного кінетичного середньопольового мо- делю Жоржа Мартана 1990 року. Показано, що у наближенні квазистаці- онарности він відповідає Хачатуряновому моделю. Строго доведено, що Мартанів модель та його 3D-версія завжди забезпечують зменшення віль- ної енергії та не уможливлюють моделювати подолання бар’єру вільної енергії разом з зародкуванням. Для реалізації процесів зародкування в Corresponding author: Tetiana Zaporozhets E-mail: zaptet@ukr.net Citation: Andriy Gusak and Tetiana Zaporozhets, Martin’s Kinetic Mean-Field Model Revisited—Frequency Noise Approach versus Monte Carlo, Metallofiz. Noveishie Tekhnol., 40, No. 11: 1415–1435 (2018), DOI: 10.15407/mfint.40.11.1415. Ìåòàëëîôèç. íîâåéøèå òåõíîë. / Metallofiz. Noveishie Tekhnol. 2018, т. 40, № 11, сс. 1415–1435 / DOI: 10.15407/mfint.40.11.1415 Îттиски доступнû непосредственно от издателя Ôотокопирование разрешено только в соответствии с лицензией  2018 ÈМÔ (Èнститут металлоôизики им. Ã. Â. Êурдюмова ÍÀÍ Óкраинû) Íапечатано в Óкраине. 1415 mailto:zaptet@ukr.net https://doi.org/10.15407/mfint.40.11.1415 https://doi.org/10.15407/mfint.40.11.1415 1416 Andriy GUSAK and Tetiana ZAPOROZHETS середньо-польових моделях необхідно вводити шум. Íа відміну від поши- реного способу введення шуму (як шуму концентрації), ми вводимо шум частоти обмінів місцями через стрибки як основну причину ôлюктуацій. Íова метода називається SKMF (Stochastic Kinetic Mean Field). Ó цій ро- боті досліджуються та порівнюються дисперсія та просторові кореляції ôлюктуацій концентрації за допомогою трьох метод — прямого моделю- вання за методою Монте-Êарло, чисельного моделювання за методою SKMF й аналітичного наближення в рамках SKMF. Порівняння цих ме- тод підтверджує відповідність певної амплітуди шуму частот усереднен- ню по відповідній скінченній кількості Монте-Êарло-запусків (по скін- ченній кількості копій канонічного ансамблю). Ключові слова: кінетика, середньопольове наближення, диôузія, шум, коливання, ôлюктуація, кореляція, ймовірність. Предложено развитие нелинейной кинетической среднеполевой модели Жоржа Мартана 1990 года. Показано, что в приближении квазистацио- нарности она соответствует модели Хачатуряна. Строго доказано, что мо- дель Мартана и её 3D-версия всегда обеспечивают уменьшение свободной энергии и не позволяют моделировать преодоление барьера свободной энер- гии вместе с зародûшеобразованием. Для реализации процессов зародûше- образования в среднеполевûх моделях необходимо вводить шум. Â отличие от распространённого способа введения шума (как шума концентрации), мû вводим шум частотû обменов местами посредством скачков как основ- ную причину ôлуктуаций. Íовûй метод назûвается SKMF (Stochastic Ki- netic Mean Field). Â этой работе исследуются и сравниваются дисперсия и пространственнûе корреляции ôлюктуаций концентрации, полученнûе с помощью трёх методов — прямого моделирования методом Монте-Êарло, численного моделирования по методу SKMF, аналитического приближе- ния в рамках SKMF. Сравнение этих методов подтверждает соответствие определённой амплитудû шума частотû усреднению по соответствующе- му конечному количеству Монте-Êарло-запусков (по конечному числу копий канонического ансамбля). Ключевые слова: кинетика, среднеполевое приближение, диôôузия, шум, ôлуктуация, корреляция, вероятность. (Received June 17, 2018) 1. INTRODUCTION Mean-field approximation is typically used for simplified analysis of many equilibrium properties of gases, plasma, and condensed matter [1–7]. Its main tricks are Eq. (1a) using unary probability distributions for calculations of the potential energy like 3( )( ) (( ) ) ( )U K d r′ ′ ′= − r∫∫∫r r r r r (1a) and Eq. (1b) simultaneously using Boltzmann distribution for this MARTIN’S KINETIC MEAN-FIELD MODEL REVISITED 1417 unary probability with approximation (1a) for potential energy, mak- ing this problem self-consistent one: 3 exp( ( ) ) ( ) exp( ( ) ) U kT U kT d r − r = ′ ′−∫∫∫ r r r . (1b) Interesting quasi-1D modification of the mean-field approach to ki- netic problems of atomic transport in solid state was suggested by George Martin in 1990 [8]. In this approach, the master equation for probability Cp of finding atom A at the site belonging to plane number ‘p’, based on balance of local in- and out-fluxes for any site, self- consistently uses the mean-field approximation for calculation of en- ergy barriers in the jump frequencies: 1 , 1 1 1, 1 , 1 1 1, (1 ) (1 ) (1 ) (1 ) . p v p p p p p p p p p p p p p p p p dC Z C C C C dt C C C C − − − − + + + + = − − Γ − − Γ + + − Γ − − Γ  (2a) Here, 2l vZ Z Z= + is a total number of nearest neighbours, Zl is a number of nearest neighbours in the central plane ‘p’ perpendicular to the concentration gradient, Zv—number of nearest neighbours in the right ‘p + 1’ and in the left plane ‘p − 1’ (Fig. 1): , 1 , 1 exp .p p p p E kT + +   Γ = ν −    (2b) , 1p p+Γ is a frequency (probability per unit time) of exchange between atom A in plane ‘p’ and atom B in plane ‘p + 1’. , 1p pE + —the difference between the saddle-point energy E s and interaction energy of jumping atoms before energy. In Ref. [9], we generalized Martin’s equations to the 3D-case with the following kinetic equations for ‘concentration’ (probability) at site ‘i’ surrounded by nearest neighbours (the sites indicated by ‘in’): ( ) 1 [ ] [ ] [ ] [ ( ), ( )] [ ] [ ] [ ( ), ( )] . Z A A B B A in dC i C i C in i A in B C i C in in A i B dt = = − Γ + Γ∑ (3) Fig. 1. Quasi-1D model of atomic migration (direction <111> for f.c.c. lattice). 1418 Andriy GUSAK and Tetiana ZAPOROZHETS Here, the jumps are restricted (within the Martin’s model) only to the first co-ordination shell (exchanges between nearest neighbours). Ex- change frequencies between A and B in the neighbouring sites ‘i’ and ‘in’ are determined in [8, 9] via Arrhenius law like ( ), 0 0 [ ] [ ] [ ( ), ( )] exp exp s A Bi in E E i E inQ i A in B kT kT  − +  Γ = ν − = ν −        (4) with saddle-point assumed the same for all jumps, and with energies before jump calculated taking into account interaction only with Z nearest neighbours (VAA, VBB, VAB) and without any account of correla- tions—within the mean-field approximation: 1 [ ] ( [ ] [ ] ), Z A A AA B AB in E i C in V C in V = = +∑ 1 [ ] ( [ ] [ ] ). Z B A BA B BB inn E in C inn V C inn V = = +∑ (5) Martin’s approach was later applied to strongly non-linear diffusion in nanofilms with sharp gradients of the jump frequencies. Among other effects, this approach predicted a possibility of the sharpening of diffusion profiles (instead of traditional smoothening) and other non- linear effects at the initial stages of interdiffusion [10, 11]. 2. STEADY-STATE LIMIT OF 3D-GENERALIZATION OF THE MARTIN’S MODEL In his original paper [8], G. Martin considers in detail the steady-state case of the kinetic equations in quasi-1D scheme. We will also start (in our general 3D case) from analysis of the steady-state solutions of Eqs. (3)–(5). Obviously, all time derivatives (for all sites ‘i’) in Eq. (3) are equal to zero if the detailed balance is satisfied: [ ] [ ] [ ( ), ( )] [ ] [ ] [ ( ), ( )]A B B AC i C in i A in B C i C in in A i BΓ = Γ (6a) or [ ] [ ] [ ] [ ] [ ] [ ] exp exp . [ ] [ ] A A B A A B B B C i E i E i C in E in E in C i kT C in kT − −   =        (6b) Equation (6b) is a steady state condition, which can be interpreted as the equalizing of chemical potentials throughout the system. Due to the exchange mechanism of diffusion, it is sufficient to equalize the reduced chemical potential (change of free energy due to substitution of atom B by the atom A): MARTIN’S KINETIC MEAN-FIELD MODEL REVISITED 1419 [ ] [ ] const.i inµ = µ ≡ µ =   (7) Here, mix 1 [ ] [ ] [ ] [ ] ln [ ] [ ] [ ] [ ] ln 2 [ ] ( ), [ ] A A B A B B Z A A AB BB inB C i i i i kT E i E i C i C i kT V C in Z V V C i = µ = µ − µ = + − = = − + −∑  (8) [ ] ln [ ] [ ] const,A A Ai kT C i E iµ = + + [ ] ln [ ] [ ] constB B Bi kT C i E iµ = + + are chemical potentials within the mean-field approximation; mix ( ) / 2AB AA BBV V V V= − + —mixing energy. As we know, Martin’s kinetic equations always tend to steady state, and steady state in closed system means equilibrium—stable or meta- stable. Thus, Eq. (8) immediately leads to the self-consistent set of non-linear algebraic equations mix 1 [ ] 2 ( ) exp [ ] exp ( 1, , ) (1 [ ]) Z A AB BB A inA C i V Z V V C in i N C i kT kT=   µ − − = = …   −    ∑  (9) with constraint of matter conservation: 1 [ ] . N A A i C i NC = =∑ (10) Equation equivalent to Eq. (9) was suggested by A. Khachaturyan [7] with arguments of Fermi–Dirac-type equation. He used it in his method of concentration waves describing ordered binary structures (see also [12–14]). These equations may be rather effectively applied for the construction of equilibrium phase diagrams of binary and mul- ticomponent alloys, but with important restriction of the universal rigid lattice. Thus, limiting (steady-state) case of Martin’s kinetic ap- proach provides self-consistent mean-field thermodynamics. Now let us consider the relaxation processes in Martin’s approach. 3. TIME EVOLUTION OF FREE ENERGY IN MARTIN’S MODEL AND ITS 3D GENERALIZATION To analyse the time evolution of the free energy, we will represent the kinetic equation (3) in terms of individual pairs of sites ‘i’, ‘in’ that automatically provides the matter conservation: ( , ) 1 [ ] , i inZ A A in dC i dC dt dt= = ∑ 1420 Andriy GUSAK and Tetiana ZAPOROZHETS ( , ) [ ] [ ] [ ( ), ( )] [ ] [ ] [ ( ), ( ) i in A A B B A dC C i C in i A in B C i C in in A i B dt = − Γ + Γ (11) Here, ( , )i in AdC dt can be called the ‘partial’ time derivative showing change of concentration in site ‘i’ (and opposite change of concentra- tion in neighbouring site ‘in’) due to exchange only between these two sites. Then ( ) ( ) ( , )/2 ( , ) /2 ( , ) [ ] [ ] [ ] [ ] ln [ ] [ ] ln [ ] [ ] [ ] [ ] [ ] [ ] [ ( ), ( )] [ ] [ ] [ ( ), ( )] i inNZ A AB AB i in A ANZ A B A B B B i in A B B A dCdF i in dt dt C i C in kT E i E i kT E in E in C i C in C i C in i A in B C i C in in A i B = µ − µ =      + − − + − ×     =      × − Γ + Γ ∑ ∑   Further, 0 /2 ( , ) exp [ ] [ ] [ ] [ ] exp [ ] [ ] [ ] [ ] [ ] [ ] ln exp ln exp [ ] [ ] [ ] [ ] [ ] exp [ ] s B B B B NZ i in A A B A A B B B A A B B dF E kT dt kT E i E in C i C in kT C i E i E i C in E in E in C i kT C in kT C i E i E i C i kT   = −ν − ×    +  ×    ×     − −   × − ×                − ×     ∑ [ ] [ ] [ ] exp . [ ] A A B B C in E in E in C in kT  − −      In notations of the reduced chemical potentials, it gives: 0 /2 ( , ) exp [ ] [ ] [ ] [ ] exp ( [ ] [ ]) [ ] [ ] exp exp . s NZ B B B B AB AB i in AB AB dF E dt kT E i E in C i C in i in kT i in kT kT   = −ν − ×    + × µ − µ ×     µ µ   × −          ∑     (12) It is evident that the expression ( 1 2)(exp( 1) exp( 2))f f f f− − is always positive except case f1 = f2 when it is equal to zero. Therefore, expres- sion [ ] [ ] [ ] [ ] exp expAB AB AB ABi in i in kT kT kT kT  µ µ µ µ     − −                  in Eq. (12) is al- MARTIN’S KINETIC MEAN-FIELD MODEL REVISITED 1421 ways positive except case of equal chemical potentials. In this product (which differs from typical expressions in the entro- py production or the free energy release rate), the first factor (differ- ence of reduced chemical potential between neighbouring sites) is the driving force of exchange, and second factor (difference between ex- ponents of reduced chemical potentials divided by kT) corresponds to general nonlinear expression for the flux of exchanging atom. This is a main reason why Martin’s scheme is better adjusted to the early stages of diffusion at very sharp concentration gradients and is able to pre- dict such non-trivial behaviour as the possibility of concentration pro- file sharpening instead of smoothening [10, 11]. (Exponential form of the driving force was suggested by M. Ivanov et al. [15].) Thus, taking also into account the common ‘minus’ before the sum in Eq. (12), the time derivative of the free energy is always negative except steady-state (absolute or metastable minima), when it is zero. So, we just proved that the Martin’s equation and its 3D generaliza- tion might describe only evolution with minimization of the free energy. Nucleation process, or any other process related to overcoming the free energy barrier, cannot be described by KMF. To model the evolution from metastable state to the stable state by overcoming of the nucleation barrier, it is necessary to introduce addi- tional noise—noise of initial conditions [9] or, better, the dynamic noise during the evolution. 4. STOCHASTIC GENERALIZATION OF KMF As just mentioned, noise should be introduced into the mean-field scheme, to describe the first-order phase transformations. In linear theories of atomic transport, the noise of concentration and of order parameter was introduced into the Onsager scheme following the fluc- tuation-dissipation theorem, for example, by Khachaturyan et al. [16, 17]. Yet, this method had some drawbacks: (1) Onsager scheme for atomic local fluxes was linear and not self- consistent, Onsager coefficients and their activation energies were not interrelated with local composition and its energetics (contrary to Martin’s approach); (2) order parameter fluctuations were introduced independently of concentration fluctuation; on the contrary, in Martin’s approach the order is not something independent, instead, it is determined by the oscillations of local concentration (unary probabilities at the sites) be- tween sublattices; (3) it seems more natural to introduce the fluctuations of the jump fre- quencies as a true reason of the noise. In 2016, we (jointly with Debrecen team) introduced a new simula- tion method called SKMF (Stochastic Kinetic Mean Field), based on in- 1422 Andriy GUSAK and Tetiana ZAPOROZHETS troduction of the jump frequencies noise [18]: Lang Lang , , , , 1 (1 )( ) (1 ) ( ) , Z i i j i j i j i j j i j i j dC C C C C dt =  = − − Γ + dΓ − − Γ + dΓ ∑ (13) Lang 3(2random 1).n i,k A = dt dΓ − (14) In analytical form, Langevin noise of frequencies satisfies the fol- lowing condition: Lang Lang 2( ) ( ) ( ).i,j k,m n ik jmt t A t t′ ′< dΓ dΓ >= d d d − (15) Among other results, we found simple regularities for modelling fluctuations in an ideal solid solution by SKMF. a) Composition deviation (mean-squared fluctuation of concentra- tion at one site) is proportional to the frequency noise amplitude An: 2 0 (1 ) ( ) .n C C C = A − d Γ (16) b) Using of certain frequency noise amplitude in SKMF is equivalent to using of M runs runs of Monte Carlo simulation, with runs 0 2 . (1 ) n M C C A Γ = − (17) In other words, M runs is a finite number of copies in the canonical en- semble over which the averaging is done. Zero noise is equivalent to the infinite number of copies in the canonical ensemble, and it is mean- field. Both equations (16) and (17) were discussed, proven analytically and checked numerically for the case of ideal solution in [18]. Here, we consider in details the fluctuations in non-ideal solutions with positive as well as with negative mixing energies V mix. One should distinguish two cases: (1) homophase fluctuations at ‘high’ tempera- ture and (2) heterophase fluctuations (nucleation) at ‘low’ tempera- ture. For example, under positive mixing energy, ‘high’ temperature means mix2 (1 ) ZV T C C k > − , when the regular solution demonstrates only homophase fluctuations without decomposition. In case 2 of ‘low’ temperature, the system (within certain composition interval) demon- strates decomposition (V mix > 0) or ordering (for example, f.c.c. alloy with V mix < 0, C = 1/4 or C = 1/2) or ordering with decomposition (for example, f.c.c. alloy with V mix < 0, C = 1/8). Below in this paper, all ex- MARTIN’S KINETIC MEAN-FIELD MODEL REVISITED 1423 amples will be calculated for the case of f.c.c. lattice. Case 2 will be considered elsewhere. 5. FLUCTUATIONS OF CONCENTRATION IN F.C.C. SOLID SOLUTION WITH NON-ZERO MIXING ENERGY Here, we consider a homogeneous (except local fluctuations) binary f.c.c. solid solution with equal average probability (concentration) of A atom being found at any site: i jC C C< >=< >= . Local (at site ‘i’) con- centration is fluctuating: .i iC C C= + d As before, we are, first of all, interested in concentration dispersion (which is of course positive and the same for each site of globally ho- mogeneous system: 2 0 .i ix C C C≡< d d >=< d > (18) We also will discuss two spatial correlations: 1 ,i inx C C≡< d d > 2 .i innx C C≡< d d > (19) Here, ‘in’ is any nearest neighbour site of the site ‘i’—(site at the first co-ordination shell around ‘i’), ‘inn’ is the next nearest neighbour site of the site ‘i’—(site at the second co-ordination shell around ‘i’). De- spite initial neglect of correlation in the basic equations of SKMF, it is physically evident that in case of positive mixing energy, when the al- loy has a tendency to decomposition (which becomes successful at low temperature), the neighbouring sites should demonstrate the tendency to the same sign of fluctuation, so that the spatial correlation 1 i inx C C≡< d d > is expected to be not zero, but positive. On the contra- ry, in case of negative mixing energy, when the alloy has a tendency to ordering, 1 i inx C C≡< d d > is expected to be not zero, but negative. Im- mediate reason of correlations is a dependence of jump frequencies on the local concentration fluctuations: , , 0 0 0 ( ( ) ( )) ( ( ) ( )) exp exp ( ) ( ) ( ) ( ) ( ) exp exp 1 . s i j A B i j s A B A B A B Q E E i E j A i B j kT kT E E E E i E j E i E j kT kT kT    − + Γ = ν − = ν − =        − + d + d d + d   = ν − ≈ Γ +           � (20) Thus, in case of non-ideal alloy, the variations of frequencies are 1424 Andriy GUSAK and Tetiana ZAPOROZHETS caused not only directly by Langevin noise of frequencies, but as well by the local variations of concentrations: Lang conc , , , ,i j i j i jdΓ = dΓ + dΓ where conc ,i jdΓ is a variation of frequency generated by local deviation of composition influencing the activation energy: conc , conc , ( ) ( ) ( ( ) ( )) , ( ) ( ) ( ( ) ( )) . A B i j B A i j E i E j A i B j kT E i E j B i A j kT d + d dΓ ≈ Γ d + d dΓ ≈ Γ � � (21) Thus, Lang Lang , , 1 1 1 (1 ) ( ) ( ) ( ) ( ) (1 ) . Z Z i i j i j j i j j Z A B B A j d C Z C C C C dt E i E j E i E j C C kT kT = = = d  = − Γd + Γ d − − dΓ − dΓ −  d + d d + d − − Γ −   ∑ ∑ ∑ (22) Variations of basic energies are: mix 1 mix 1 ( ) ( ) 2 ( ( )), ( ) ( ) 2 ( ( )). Z A B A in Z B A A jn E i E i V C in E j E j V C jn = = d − d = − d d − d = d ∑ ∑ (23) Substitution of Eq. (23) into Eq. (22) gives: Lang Lang , , 1 1 ( ) ( ) ( ) (1 ) Z Z A A A i j j i j j d C i Z C i C j C C dt = = d  = − Γd + Γ d − − dΓ − dΓ − ∑ ∑ ( ) ( ) mix 1 1 1 2 (1 ) ( ) ( ) . Z Z Z A A j in jn V C C C in C jn kT = = =   − − Γ − d + d    ∑ ∑ ∑ (24) Multiply this equation by dCi and make an averaging for steady state: 2 2 1 mix 1 1 1 Lang Lang , , 1 ( ) 0 ( ) ( ) ( ) 2 2 (1 ) ( ) ( ) ( ) ( ) (1 ) . Z i i A A j Z Z Z A A A A j in jn Z i i j i j i j d C d C C Z C C i C j dt dt V C C C i C in C i C jn kT C C C C = = = = = d < d > < d >= = = − Γ < d > +Γ < d d > −   − − Γ − < d d > + < d d > −     − − < d dΓ > − < d dΓ >  ∑ ∑ ∑ ∑ ∑ (25) MARTIN’S KINETIC MEAN-FIELD MODEL REVISITED 1425 Here, ‘j’ correspond to nearest neighbours of i, ‘in’ are the neighbours of i, ‘jn’—neighbours of j, 4 sites are simultaneously the neighbours for i and j (see Fig. 2). Here, in ‘first approximation’, we consider concentrations fluctua- tions in sites as statistically correlated only for nearest neighbours (neglecting, so far, the correlation in the second co-ordination shell): 2 0 1 , ( ( ))( ( )) ( ) ( ) , is a neighbour of 0, inall other cases. A A A A C x k m C k C m C i C in x m k  < d >= = < d d >= < d d >=  (Let us remind that, in ‘zeroth approximation’, the correlation be- tween nearest neighbours is taken as just zero). Then, in our ‘first ap- proximation’, 1 1 ( ) ( ) Z A A in C i C in Zx = < d d > =∑ . In the sum 1 ( ) ( ) Z A A jn C i C jn = < d d >∑ over the nearest neighbours of site j, which in turn is a neighbour of site ‘i’, one term survives as x0, since i is one of the neighbours of j; also four terms survive as x1 (one can geometrically check that each of nearest neighbours of ‘i’ has other 4 nearest neighbours of ‘i’ in its first co-ordination shell—see Fig. 2). Therefore, 0 1 1 ( ) ( ) 1 4 . Z A A jn C i C jn x x = < d d > = +∑ (26) So, 1 1 1 1 0 1 0 1 ( ) ( ) ( ) ( ) ( 4 ) ( 4) . Z Z Z A A A A j in jn C i C in C i C jn Z Zx x x Zx Z Z x = = =   − < d d > + < d d > =    − + + = − − ∑ ∑ ∑ Thus, Eq. (25) is reduced to Fig. 2. Neighbouring sites i and j have four common neighbours. 1426 Andriy GUSAK and Tetiana ZAPOROZHETS mix mix 0 1 Lang Lang , , 1 2 2 1 (1 ) 1 (1 ) ( 4) (1 ) . Z i j i i i j j V V Z x C C Z x C C Z kT kT C C C C =     Γ + − − Γ + − − =         = − < d dΓ > − < d dΓ > ∑ (27) In full analogy with Appendix in [18], one can show that for any i, Lang Lang 2 , , 1 (1 ) . Z i j i i i j n j C C C C ZA =  < d dΓ > − < d dΓ > = − ∑ (28) Thus, mix mix 2 2 2 0 1 2 16 1 (1 ) 1 (1 ) (1 ) .n V V x C C x C C C C A kT kT     + − − + − = − Γ        (29) One can prove (using additional long algebra) that the account of non-zero correlations in the second co-ordination shell converts Eq. (29) into the following equation: mix mix mix 0 1 2 2 2 2 (1 )2 (1 )16 (1 )4 1 1 (1 ) .n C C V C C V C C V x x x kT kT kT C C A    − − − + − + + =        = − Γ (30) We have now three unknowns— 2 0 ( ) ,x C i= < d > 1 ( ) ( 1) ,x C i C in=< d d > and 2 ( ) ( 2)x C i C in= < d d > (‘in1’ and ‘in2’ correspond to the first and second co-ordination shells, so that we need two more equations. For this, we take once more the kinetic equation (16) and multiply it in oth- er way—first, by the fluctuation of concentration in one of the sites ‘in1’, neighbouring to ‘i’, and, second, by the fluctuation in the ‘in2’ in the second co-ordination shell. At that, due to equivalence of all sites in homogeneous alloy, 1 1 1 1 1 1 0 2 2 i in in i i in in i in i d C d C C C dt dt d C d C d C C C C dt dt dt d d < d > = < d > = d d < d d > = < d > + < d > = > =    (31) 2 2 2 2 2 1 0. 2 2 i in in i i in in i in i d C d C C C dt dt d C d C d C C C C dt dt dt d d < d > = < d > = d d < d d > = < d > + < d > = > =    (32) Substituting Eq. (24) for id C dtd into Eqs. (31), (32), and making ra- MARTIN’S KINETIC MEAN-FIELD MODEL REVISITED 1427 ther long and tiresome algebra, one gets, together with Eq. (29) with notations mix (1 ) , V C C kT υ ≡ − 2 2 2(1 ) nA I C C≡ − Γ , (33) the set of three algebraic equations for three unknowns x0, x1, x2: 0 1 2 0 1 2 0 1 2 (1 2 ) ( 1 16 ) 4 , (1 16 ) ( 8 6 ) (2 24 ) , 2 ( 1 12 ) (3 8 ) 0. x x x I x x x I x x x + υ + − − υ + υ = + υ + − + υ + + υ = υ + − + υ + + υ = (34) Solution is following: 2 analyt analyt 0 02 3 19 54 416 ( ) , 19 54 1204 1136 x I k I − υ − υ = = υ − υ − υ − υ (35a) analyt analyt 1 12 3 2(19 36 ) ( ) , 19 54 1204 1136 x I k I + υ = υ = υ − υ − υ − υ (35b) analyt 2 analyt 2 22 3 212 ( ) . 19 54 1204 1136 x I k I= υ = υ − υ − υ − υ (35c) Thus, our analytic approximation of SKMF method predicts propor- tionality to I (actually, to the squared noise amplitude multiplied by 2 2(1 )C C− ). To check this prediction, we found x0, x1, x2 by direct nu- meric simulation of fluctuations according to numeric solution of the Eqs. (13), (14). Results of simulation are shown in Fig. 3. Indeed, all of the above-mentioned three characteristics are proportional to the re- duced noise parameter 2 2 2(1 ) nI C C A≡ − Γ as predicted: numeric numeric 0 0 ( ) ,x k I= υ numeric numeric 1 1 ( ) ,x k I= υ numeric numeric 2 2 ( ) .x k I= υ So far, we calculated dispersion per one site. This is not convenient for comparison with Monte Carlo and phenomenological thermody- namics. Therefore, we also calculated the dispersion for the cluster containing n sites. In Figure 4, we compare theoretical predictions and numeric results for the dependence of factors k0, k1, k2 on the renormalized mixing en- ergy mix(1 )C C V kTυ ≡ − for the case when dispersion and correlations are calculated for ‘cluster’ containing one site. In Figure 4, we can see that the difference between analytic approximation and numeric simu- lation is not more than few percent; it is almost ideal for zero and nega- tive mixing energies and increases for large positive mixing energies. To compare with Monte Carlo, we should consider concentrations for cluster containing at least n = 1 + 12 = 13 sites. Therefore, we recalcu- lated the results for dispersion for the case of larger clusters. Composi- tion fluctuation in clusters containing central atom and some part of the neighbourhood, can be found for various cluster definitions, but 1428 Andriy GUSAK and Tetiana ZAPOROZHETS we choose a cluster containing 13 equivalent sites with the same ‘weight’ in calculating the average: 2 12 analyt 0 1 2 0 1 13 48 61 ( 13) ( ) ( ) . 13 169in x x x x n C i C in =   + +  = = d + d =      ∑ (36) In Figure 5, we compare analytic approximation and numeric results of SKMF modelling for dispersion x0(n = 13) calculated for concentra- tions averaged over cluster of 1 + 12 sites as a function of reduced noise I, and for corresponding coefficient k0(n = 13) = x0(n = 13)/I as a func- tion of renormalized mixing energy v. Now, let us compare SKMF simulation results with Monte Carlo simulation. Standard Metropolis algorithm for exchange mechanism was applied. Concentration for every site at each step was calculated as an aver- age over cluster containing 13 = 1 + 12 sites (central atom plus first co- ordination shell of the f.c.c. lattice) and 19 = 1 + 12 + 6 (central site Fig. 3. Dependences of dispersion x0 (a) and of correlations in the first and sec- ond co-ordination shells x1 (b), x2 (c) on 2 2 2(1 ) nI C C A≡ − Γ for positive 0.04, negative −0.04 and zero mixing energy mix(1 ) .C C V kTυ ≡ − So far, all charac- teristics were calculated for single site (n = 1) by numeric SKMF modelling. MARTIN’S KINETIC MEAN-FIELD MODEL REVISITED 1429 plus two co-ordination shells). Monte Carlo results for these two choic- es of averaging clusters are shown in Fig. 6. To compare the kinetic Monte Carlo (KMC) simulation results with SKMF, it could present some problem, since SKMF model contains noise amplitude An. Luckily, as mentioned above, at least for the case of ideal solution we managed to solve this problem [18]. Namely, we relate the noise amplitude to the number of runs of Monte Carlo simu- lation, in case when the concentration at each site at each moment is calculated as an average over the M runs copies of the system. At that, dispersion of concentration (for an ideal solution) is equal to 2 2 2(1 ) nA I C C≡ − Γ in SKMF approach and to runs (1 )C C M − in Monte Carlo approach with averaging over M runs runs. To make these two expres- sions for dispersion in two approaches coinciding, we got interrelation (17)— runs 0 2 . (1 ) n M C C A Γ = − Now, we will try to derive the analogue of interrelation for the case Fig. 4. Dependences of factors k0 (a), k1 (b), k2 (c) on mix(1 )C C V kTυ ≡ − for analytic SKMF (solid line) approximation and for numeric SKMF (dots) mod- elling. All calculations made for ‘cluster’ containing one site (n = 1). 1430 Andriy GUSAK and Tetiana ZAPOROZHETS of regular solid solution. As for Monte Carlo approach, we made the calculations with averag- ing over M runs runs (simultaneous copies within canonical ensemble). We specially checked that all above-mentioned characteristics are in- versely proportional to Mruns (see Fig. 7). For example, at mix(1 ) 0.02C C V kTυ ≡ − = , KMC runs 0 runs 0.0251 ( 13, 0.02, ) .x n M M = υ = � (37) As for analytic approximation of the SKMF approach, we passed to Fig. 5. Comparison between analytic approximation (solid lines) and numeri- cal results of SKMF modelling (dots) for dispersion x0(n = 13) calculated for concentrations averaged over cluster of 1 + 12 sites as a function of reduced noise 2 2 2(1 ) nI C C A≡ − Γ (a) and for corresponding coefficient 0 0( 13) ( 13)k n x n I= = = as a function of renormalized mixing energy mix(1 )C C V kTυ ≡ − (b). Fig. 6. Dependences of dispersion KMC 0x and of correlations in the first and second co-ordination shells KMC 1 ,x KMC 2x versus mix(1 )C C V kTυ ≡ − calculated for concentrations averaged over clusters containing n = 13 (filled dots) and n = 19 (unfilled dots) by numeric SKMF modelling. MARTIN’S KINETIC MEAN-FIELD MODEL REVISITED 1431 the clusters containing many sites, n >> 1. Then, analytic approxima- tion of the short-range order in SKMF model predicts that 2 0 1 1 2 2 0 1 1 2 22 1 1 1 ( ) ( ), K i nx nZ x nZ x C i x Z x Z x n nn= + +  < d > ≈ = + +    ∑ (38) where co-ordination numbers for the first and second shells of f.c.c. lattice are Z1 = 12, Z2 = 6. Taking into account the analytical solution (35), one gets 2 0 1 2 1 1 1 ( ) ( 12 6 ) n i C i x x x n n=   < d > ≈ + + =    ∑ 2 2 2 3 1 (19 54 416 ) 12 (38 72 ) 1272 . 19 54 1204 1136 I n − υ − υ + υ + υ + υ = − υ − υ − υ Further, here, we will limit ourselves by the linear approximation in terms of renormalized mixing energy. It gives 2 22 2 mix 1 1 (1 24 ) (1 ) ( ) 1 24 (1 ) . n n i AC C V C i I C C n n n kT=  + υ −  < d > ≈ = + −   Γ    ∑ (39) On the other hand, according to thermodynamic theory of fluctua- tion, in regular solutions, the composition fluctuation in the cluster containing n sites, is equal to 2 mix2 mix 2 1 1 1 (1 ) . 22 1 (1 ) (1 ) n kT kT C C C kTn n n ZVg ZV C C C C kTC − < d > = = =  ∂ − − −  −∂  Fig. 7. Dispersion KMC 0 ( 13)x n = versus M runs (a) and logarithm x KMC(n, M runs) for n = 13 (filled dots) and n = 19 (unfilled dots) versus lnMruns (b) at mix(1 ) 0.02.C C V kTυ ≡ − = 1432 Andriy GUSAK and Tetiana ZAPOROZHETS If one averages the results over M runs copies of the canonical ensem- ble, then the dispersion will be M runs times less: runs 2 runs mix, 1 1 (1 ) . 1 2 (1 ) ( )n M C C C M n ZV C C kT − < d > = − − (40) In the same approximation of small values of mix(1 ) ( ),C C V kTυ = − Eq. (40) transforms into runs mix 2 runs, 1 1 (1 ) 1 24 (1 ) . n M V C C C C C n kTM   < d > ≈ − + −    (41) Equalizing Eqs. (41) and (39) for regular solution within the cluster of N sites gives: 2 mix 2 2 mix runs 1 (1 ) 1 24 (1 ) 1 1 (1 ) 1 24 (1 ) ; nA V C C C C n kT V C C C C M n kT   − + − = Γ     = − + −    (42) so, runs 0 2(1 ) n M C C A Γ = − that totally coincides with Eq. (8) for ideal so- Fig. 8. Comparison of Monte Carlo dispersion under averaging over fixed number of MC runs for the clusters of size n = 13 (diamond) KMC 0 ( 13)x n = with analytic (solid lines) analyt runs 0(1 ) ( 13)C C k n M− = and numeric (square) numeric runs 0(1 ) ( 13)C C k n M− = SKMF results as a function of renormalized mixing energy mix(1 ) .C C V kTυ ≡ − Data are given for M runs = 1, but practi- cally the same is valid for any M runs. MARTIN’S KINETIC MEAN-FIELD MODEL REVISITED 1433 lution and M runs runs of Monte Carlo. Thus, for the regular solution, at least for linear approximation over renormalized mixing energy, our interpretation of noise ampli- tude remains the same as for ideal solution—inverse squared noise am- plitude is equivalent to averaging over finite number M runs (Eq. (8)) of the copies of canonical ensemble. In other words, we predict that in regular solution runs SKMF 2 KMC 0 runs, ( ) (1 ) . n M k n C C C M − < d > ≈ (43) To check a validity of this analytic prediction, we compare KMC runs 0 ( 13, )x n M= and SKMF runs 0(1 ) ( 13) .C C k n M− = Numeric experi- ment confirms the above-described analytic theory, at least, for small positive and for any reasonable negative mixing energy (see Fig. 8). 6. CONCLUSIONS 1. G. Martin’s approach to kinetic mean-field and its generalization to 3D contain mean-field thermodynamics of Khachaturyan [7] as a steady-state limit. 2. Martin’s kinetic is nonlinear in respect to fluxes, and therefore should be more appropriate for simulation of atomic migration and phase transformations in the sharp concentration gradients. 3. 3D-generalization of Martin’s KMF equations is proved (for the first time) to provide only negative or zero time derivative. Therefore, KMF cannot provide the first-order transformations with overcoming the nucleation barrier. 4. We introduce frequency noise instead of concentration noise as a basic reason of stochastic behaviour leading to concentration fluctua- tions and to overcoming the nucleation barriers. 5. Introduction of frequency noise leads to characteristics of fluctua- tions coinciding with Monte Carlo approach under the following inter- relation between noise amplitude and the number of ensemble copies (MC runs) over which the averaging is done: runs 0 2 . (1 ) n M C C A Γ = − 6. Dependences of dispersion and correlations on the mixing energies are reasonably well described by analytic approximation (35), especial- ly for negative and for small positive mixing energies. 7. SKMF is much faster than MC and gives analogous results for fluctu- ations. Therefore, it looks reasonable to use SKMF for modelling of nu- cleation behaviour, keeping in mind the interrelation (8). It might be a good tool to check and distinguish the alternative theories of nucleation [22–24], especially in the sharp concentration gradients [25, 26]. 1434 Andriy GUSAK and Tetiana ZAPOROZHETS ACKNOWLEDGEMENTS This work was supported by both the Marie Curie International Re- search Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme under Grant 612552 and the Min- istry of Education and Science of Ukraine. Authors are grateful to George Martin, Zoltan Erdélyi, Rafal Ko- zubski, and Helen Zapolsky for fruitful discussions. REFERENCES 1. J. S. Rowlinson, Journal of Statistical Physics, 20, No. 2: 197 (1979). 2. A. A. Vlasov, Many-Particle Theory and Its Application to Plasma (New York: Gordon and Breach: 1961); A. A. Vlasov, Teoriya Mnogikh Chastits. 2 nd Ed. (Moscow: LIBROKOM: 2012). 3. A. A. Vlasov, Non-Local Statistical Mechanics (Moscow: Nauka: 1978) (in Russian). 4. W. Anderson, Phys. Rev., 79, No. 4: 705 (1950). 5. P. O. Löwdin, Phys. Rev., 97, No. 6: 1490 (1955). 6. R. H. Fowler and E. A. Guggenheim, Proc. of the Royal Society of London. Series A, Mathematical and Physical Sciences (1940), vol. 174, p. 189. 7. A. Khachaturyan, Theory of Structural Transformations in Solids (New York: John Wiley & Sons: 1983). 8. G. Martin, Phys. Rev. B, 41, No. 4: 2279 (1990). 9. N. V. Storozhuk, K. V. Sopiga, and A. M. Gusak, Philos. Mag., 93, No. 16: 1999 (2013). 10. Z. Erdélyi, I. A. Szabу, and D. L. Beke, Phys. Rev. Lett., 89, No. 16: 165901-1 (2002). 11. Z. Erdélyi, M. Sladecek, L. M. Stadler, I. Zizak, G. A. Langer, M. Kis-Varga, D. L. Beke, and B. Sepiol, Science, 306: 1913 (2004). 12. T. M. Radchenko, V. A. Tatarenko, and H. Zapolsky, Solid State Phenomena, 138: 283 (2008). 13. S. M. Bokoch, V. A. Tatarenko, and I. V. Vernyhora, Uspehi Fiziki Metallov, 13: 269 (2012). 14. T. M. Radchenko and V. A. Tatarenko, Uspehi Fiziki Metallov, 9, No. 1: 1 (2008) (in Ukrainian). 15. M. A. Ivanov, M. M. Churakov, and V. I. Glushchenko, Physics of Metals and Metallography, 88, No. 2: 12 (1999) (in Russian). 16. Y. Wang, L. Chen, and A. Khachaturyan, Solid-to-Solid Phase Transformations (PTM’94, 1994), p. 245. 17. Y. Wang, D. Banerjee, C. C. Su, and A. G. Khachaturyan, Acta Mater., 46, No. 9: 2983 (1998). 18. Z. Erdélyi, M. Pasichnyy, V. Bezpalchuk, J. J. Tomán, B. Gajdics, and A. M. Gusak, Computer Physics Communications, 204: 31 (2016). 19. V. M. Bezpalchuk, M. O. Pasichnyy, and A. M. Gusak, Metallofiz. Noveishie Tekhnol., 38, No. 9: 1135 (2016) (in Ukrainian). 20. V. M. Bezpalchuk, A. M. Gusak, and R. Kozubski, Uspehi Fiziki Metallov, 18, https://doi.org/10.1007/BF01011513 https://doi.org/10.1103/PhysRev.79.705 https://doi.org/10.1103/PhysRev.97.1490 https://doi.org/10.1098/rspa.1940.0014 https://doi.org/10.1098/rspa.1940.0014 https://doi.org/10.1103/PhysRevB.41.2279 https://doi.org/10.1080/14786435.2012.746793 https://doi.org/10.1080/14786435.2012.746793 https://doi.org/10.1103/PhysRevLett.89.165901 https://doi.org/10.1103/PhysRevLett.89.165901 https://doi.org/10.1126/science.1104400 https://doi.org/10.4028/www.scientific.net/SSP.138.283 https://doi.org/10.4028/www.scientific.net/SSP.138.283 https://doi.org/10.15407/ufm.13.03.269 https://doi.org/10.15407/ufm.13.03.269 https://doi.org/10.15407/ufm.13.03.269 https://doi.org/10.15407/ufm.13.03.269 https://doi.org/10.1016/S1359-6454(98)00015-9 https://doi.org/10.1016/S1359-6454(98)00015-9 https://doi.org/10.1016/j.cpc.2016.03.003 http://en.ahau.findplus.cn/?h=search_list&query=AR:%22Bezpalchuk%2C%20V%2EM%2E%22 http://en.ahau.findplus.cn/?h=search_list&query=AR:%22Pasichnyy%2C%20M%2EO%2E%22 http://en.ahau.findplus.cn/?h=search_list&query=AR:%22Gusak%2C%20A%2EM%2E%22 http://en.ahau.findplus.cn/?h=search_list&query=AR:%22Gusak%2C%20A%2EM%2E%22 https://doi.org/10.15407/mfint.38.09.1135 http://en.ahau.findplus.cn/?h=search_list&query=AR:%22Bezpalchuk%2C%20V%2EM%2E%22 http://en.ahau.findplus.cn/?h=search_list&query=AR:%22Gusak%2C%20A%2EM%2E%22 http://en.ahau.findplus.cn/?h=search_list&query=AR:%22Kozubski%2C%20R%2E%22 http://en.ahau.findplus.cn/?h=search_list&query=AR:%22Kozubski%2C%20R%2E%22 MARTIN’S KINETIC MEAN-FIELD MODEL REVISITED 1435 No. 3: 205 (2017). 21. V. M. Bezpalchuk, D. S. Rusenko, and A. M. Gusak, Metallofiz. Noveishie Tekhnol., 39, No. 7: 865 (2017) (in Ukrainian). 22. A. S. Abyzov and J. W. Schmelzer, J. Non-Crystalline Solids, 384: 8 (2014). 23. J. W. Schmelzer, A. S. Abyzov, and J. Möller, J. Chem. Phys., 121, No. 14: 6900 (2004). 24. V. Bezpalchuk, R. Kozubski, M. Pasichnyy, and A. Gusak, Defect and Diffusion Forum, 383: 59 (2018). 25. A. M. Gusak, F. Hodaj, and G. Schmitz, Philos. Mag. Lett., 91, No. 9: 610 (2011). 26. A. M. Gusak, T. V. Zaporozhets, Y. O. Lyashenko, S. V. Kornienko, M. O. Pasichnyy, and A. S. Shirinyan, Diffusion-Controlled Solid State Reactions: in Alloys, Thin-Films, and Nanosystems (New York: John Wiley & Sons: 2010). https://doi.org/10.15407/ufm.18.03.205 https://doi.org/10.15407/mfint.39.07.0865 https://doi.org/10.15407/mfint.39.07.0865 https://doi.org/10.1016/j.jnoncrysol.2013.04.019 https://doi.org/10.1063/1.1786914 https://doi.org/10.1063/1.1786914 https://doi.org/10.1080/09500839.2011.600257 https://doi.org/10.1080/09500839.2011.600257 https://doi.org/10.1002/9783527631025 https://doi.org/10.1002/9783527631025 https://doi.org/10.1002/9783527631025 << /ASCII85EncodePages false /AllowTransparency false /AutoPositionEPSFiles true /AutoRotatePages /None /Binding /Left /CalGrayProfile (Dot Gain 20%) /CalRGBProfile (sRGB IEC61966-2.1) /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2) /sRGBProfile (sRGB IEC61966-2.1) /CannotEmbedFontPolicy /Error /CompatibilityLevel 1.4 /CompressObjects /Tags /CompressPages true /ConvertImagesToIndexed true /PassThroughJPEGImages true /CreateJobTicket false /DefaultRenderingIntent /Default /DetectBlends true /DetectCurves 0.0000 /ColorConversionStrategy /CMYK /DoThumbnails false /EmbedAllFonts true /EmbedOpenType false /ParseICCProfilesInComments true /EmbedJobOptions true /DSCReportingLevel 0 /EmitDSCWarnings false /EndPage -1 /ImageMemory 1048576 /LockDistillerParams false /MaxSubsetPct 100 /Optimize true /OPM 1 /ParseDSCComments true /ParseDSCCommentsForDocInfo true /PreserveCopyPage true /PreserveDICMYKValues true /PreserveEPSInfo true /PreserveFlatness true /PreserveHalftoneInfo false /PreserveOPIComments true /PreserveOverprintSettings true /StartPage 1 /SubsetFonts true /TransferFunctionInfo /Apply /UCRandBGInfo /Preserve /UsePrologue false /ColorSettingsFile () /AlwaysEmbed [ true ] /NeverEmbed [ true ] /AntiAliasColorImages false /CropColorImages true /ColorImageMinResolution 300 /ColorImageMinResolutionPolicy /OK /DownsampleColorImages true /ColorImageDownsampleType /Bicubic /ColorImageResolution 300 /ColorImageDepth -1 /ColorImageMinDownsampleDepth 1 /ColorImageDownsampleThreshold 1.50000 /EncodeColorImages true /ColorImageFilter /DCTEncode /AutoFilterColorImages true /ColorImageAutoFilterStrategy /JPEG /ColorACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /ColorImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000ColorACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000ColorImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /GrayImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000GrayACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000GrayImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict << /K -1 >> /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False /CreateJDFFile false /Description << /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E> /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e> /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002> /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002> /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e> /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e> /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e> /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e> /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a> /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e> /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e> /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E> /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.) /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e> /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e> /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002> /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e> /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e> /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e> /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.) /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e> /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e> /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e> /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e> /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e> /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e> /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e> /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e> /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e> /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e> /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e> /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.) >> /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ << /AsReaderSpreads false /CropImagesToFrames true /ErrorControl /WarnAndContinue /FlattenerIgnoreSpreadOverrides false /IncludeGuidesGrids false /IncludeNonPrinting false /IncludeSlug false /Namespace [ (Adobe) (InDesign) (4.0) ] /OmitPlacedBitmaps false /OmitPlacedEPS false /OmitPlacedPDF false /SimulateOverprint /Legacy >> << /AddBleedMarks false /AddColorBars false /AddCropMarks false /AddPageInfo false /AddRegMarks false /ConvertColors /ConvertToCMYK /DestinationProfileName () /DestinationProfileSelector /DocumentCMYK /Downsample16BitImages true /FlattenerPreset << /PresetSelector /MediumResolution >> /FormElements false /GenerateStructure false /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles false /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /DocumentCMYK /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /UseDocumentProfile /UseDocumentBleed false >> ] >> setdistillerparams << /HWResolution [2400 2400] /PageSize [612.000 792.000] >> setpagedevice